Чтение онлайн

на главную

Жанры

Загадка булатного узора
Шрифт:

В 20-х годах XIX века русские финансы находились в весьма плачевном состоянии, и золота для чеканки монет не хватало. Министр финансов Е. Ф. Канкрин решил заменить золото платиной. Он поручил известному металлургу П. Г. Соболевскому организовать чеканку платиновых монет. Но как это осуществить, если температура плавления платины очень высокая (1773 °C) и расплавить ее в то время было невозможно, а под молотом она не ковалась и даже не раскалывалась при ударах на наковальне?

И все-таки П. Г. Соболевский и его коллега В. В. Любарский нашли способ производства изделий из платины. Они растворили ее в царской водке, добавили хлористый аммоний и выделили платину из раствора в виде комплексной соли. Прокаливая

эту соль на воздухе, можно было получать платиновую губку, которая легко размалывалась в порошок. Порошок прессовали в холодном состоянии в специальных формах. Прессовку нагревали и в одних случаях спекали, а в других проковывали в различные изделия. В 1826 году были получены проволока, чаши, тигли, медали и даже слиток. С 1828 года Монетный двор начал серийный выпуск платиновых монет. На эти цели было употреблено 900 пудов соли (около 15 тонн) платины. Россия стала первой в мире страной, которая реализовала промышленную технологию порошковой металлургии платины. Англичанин Волластон только в 1829 году предложил аналогичный способ получения компактной платины. Знаменательно, что платиновые монеты, выпущенные к Московской Олимпиаде-80, были изготовлены также методом порошковой металлургии.

В XX веке порошковая металлургия становится наукой и отраслью промышленности. В настоящее время порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и неметаллических материалов, а также полуфабрикатов и изделий из них. Методами порошковой металлургии получают ряд материалов, которые подобно платине и медно-графитовым щеткам трудно или невозможно получить традиционными методами. Вольфрамомедные, железокерамические, металлостекольные, алюмографитовые, боропластмассовые и ряд других подобных материалов с равномерно распределенными частицами нерастворяющихся друг в друге фаз получают только путем спекания или горячего прессования заготовок из хорошо перемешанных порошков этих компонентов. В некоторых из перечисленных материалов достигнуто увеличение прочности примерно в 10 раз при сохранении низкого удельного веса.

Спрессованные и спеченные из металлических порошков изделия получаются пористыми. Эти свойства используются для изготовления фильтров. В настоящее время изготавливают фильтры из порошков меди, бронзы, латуни, никеля и нержавеющих сталей. Фильтры используют в автомобильных и авиационных двигателях для фильтрации масла, в дизелях для фильтрации горючего, в газопроводах для очистки газов от пыли, в пищевой и химической промышленности для фильтрации щелочей и кислот.

На основе железного порошка созданы различные антифрикционные изделия.

Из металлических порошков получают также большое количество фрикционных изделий, работающих в узлах высокого трения. Износостойкие фрикционные изделия из порошковых сплавов широко используют в тормозных устройствах различных машин и механизмах.

Особое значение приобрели порошки быстрорежущих сталей, легированных вольфрамом, молибденом, ванадием. Карбиды этих элементов, придающие стали износостойкость при высоких температурах, распределяются в ней неравномерно. Это явление, называемое ликвацией, значительно снижает стойкость режущего инструмента.

Ликвация связана со сравнительно медленной кристаллизацией стали в изложницах (формах). Если обеспечить очень быстрый переход стали из жидкого в твердое состояние, то ликвацию можно практически полностью устранить. Но можно ли это сделать? Да, можно — путем распыления жидкой стали специальными форсунками в защитной атмосфере и получением из нее порошка. Осуществляется это следующим образом: расплавленная сталь протекает через небольшое отверстие и разбивается струями азота или аргона на мельчайшие брызги. Остывая, они стальным порошком падают в металлосборник. Скорость охлаждения частиц расплавленного металла в сотни раз выше той, которая характерна для монолитного металла в ходе его кристаллизации в слитке. Благодаря этому почти полностью устраняется ликвация, стойкость инструмента из порошковой стали увеличивается в несколько раз.

Чтобы получить из порошка заготовку для инструмента, надо миллионы порошинок превратить в компактный металл. Порошок насыпают в металлические капсулы, герметически закрывают их и прессуют. Полученные заготовки «перековываются» в любой нужный профиль. Правда, процесс этот идет не под молотом, а под скоростным гидравлическим прессом. Как тут не вспомнить о японских кузнецах, которые с древних времен аналогичным способом получали высокоуглеродистые стали для инструмента. Они дробили крицу в мелкий порошок, науглероживали его в горне и сваривали под молотом в специальную заготовку. Такие заготовки в Японии были известны под названием «уваган». Уваган в твердом состоянии приваривался к куску мягкого железа, после чего изделие подвергалось термической обработке.

Готовый инструмент имел очень твердый, износостойкий наконечник и мягкую упругую сердцевину. Вот уж поистине новое — это забытое старое. Но старое, повторенное, конечно, на более высоком уровне на современной технической основе.

Значительную роль приобретают в технике и другие изделия из металлических порошков. Подобно булату, многие из них обладают неравновесной структурой, представляющей собой относительно пластичную основу с равномерно распределенными в ней твердыми и прочными включениями.

Давно известно, что дисперсная (очень мелкая) фаза упрочняет сплав. Так, например, твердые дисперсные частицы цементита (карбида железа) упрочняют обычную углеродистую сталь. Высокая прочность никелевых жаропрочных сплавов в большинстве случаев обеспечивается наличием упрочняющей фазы — мелких частиц интерметаллического соединения никель-алюминий или никель-титан. Поэтому с увеличением в этом сплаве содержания алюминия и титана повышаются его механические свойства. К сожалению, при высоких температурах легированные никелевые сплавы разупрочняются вследствие растворения в них упрочняющей фазы. Стараний металлургов повысить жаропрочность никелевых и алюминиевых сплавов к положительным результатам не приводили до тех пор, пока на помощь не пришла порошковая металлургия.

В 1947 году было сделано сенсационное открытие: алюминиевые сплавы, полученные из чешуйчатого тонкодисперсного алюминиевого порошка путем брикетирования и горячего прессования, обладают очень высокими жаропрочными свойствами. Оказалось, что в таких сплавах упрочнение алюминиевой матрицы обеспечивается прочными и твердыми мелкодисперсными оксидами алюминия, которые отличаются высокой тугоплавкостью и стабильностью. А главное — они практически не растворяются в алюминии даже при температуре его плавления.

Алюминий, упрочненный частицами окиси алюминия, называют САП — спеченная алюминиевая пудра. В настоящее время промышленность производит несколько марок САП, которые применяются для самых разнообразных конструкций. САП сохраняет удельный вес алюминия и его высокую коррозийную стойкость. Его при меняют вместо нержавеющих сталей и титановых сплавов.

Порошковые покрытия являются эффективным способом борьбы с коррозией металлов. Коррозионная стойкость стали с такими покрытиями возрастает в 3–5 раз по сравнению с лакокрасочной защитой! Например, 1 т порошкового покрытия может защитить от коррозии в течение 25–30 лет 40 тыс. т металлических конструкций мостов, опор линий электропередач, железнодорожных вагонов и других строительных сооружений. Что же касается узлов трения машин и механизмов, то здесь 1 т покрытий экономит до 100 тыс. рублей, повышая стойкость деталей в 5–10 раз.

Поделиться:
Популярные книги

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Лорд Системы 14

Токсик Саша
14. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 14

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Ученик. Второй пояс

Игнатов Михаил Павлович
9. Путь
Фантастика:
фэнтези
боевая фантастика
5.67
рейтинг книги
Ученик. Второй пояс

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII