Чтение онлайн

на главную

Жанры

Загадки для знатоков. История открытия и исследования пульсаров
Шрифт:

Шварцшильд получил выражение для той критической величины, вблизи которой поле тяжести можно назвать сверхсильным. Случайно математическое выражение этой величины оказалось в точности таким, какое получил Лаплас для радиуса своей гипотетической невидимой звезды.

И тогда выяснилась странная вещь. В уравнении оказалась, как говорят математики, сингулярность. То есть область, в которой поле тяжести обращается в бесконечность. В обычной ньютоновской формуле закона всемирного тяготения тоже есть сингулярность. Если расстояние между двумя телами равно нулю, то и в ньютоновской теории сила притяжения таких тел друг к другу равна бесконечности. Но эта сингулярность никому не мешает — в природе не может реализоваться случай, когда расстояние между телами точно равно нулю! А Шварцшильд в рамках общей теории относительности нашел, что сила тяжести становится бесконечно большой

при конечном, не равном нулю, расстоянии. Достаточно сжать звезду до некоторого критического размера, и сила тяжести на поверхности такой звезды станет бесконечно большой. Этот критический радиус и был назван гравитационным радиусом, или радиусом Шварцшильда. Гравитационный радиус — та граница, с приближением к которой эффекты общей теории относительности неограниченно нарастают.

Переменной величиной в формуле радиуса Шварцшильда является только масса звезды. Чем больше масса звезды, тем больше ее гравитационный радиус. Гравитационный радиус Солнца равен 3 км. Запомните эту цифру — достаточно знать массу звезды, выраженную в массах Солнца, и мы, умножив массу на три, получим величину гравитационного радиуса звезды в км. Так вот, если радиус звезды ненамного больше гравитационного, то поле тяжести сверхсильно. Радиус Солнца больше гравитационного в 200 тысяч раз, и эффекты общей теории относительности очень малы, поле тяжести Солнца хорошо описывается ньютоновской теорией (эффекты малы, но все же измеримы — ведь измерено же отклонение луча света в поле тяготения Солнца!). А радиус нейтронной звезды всего 10 км — в 2–3 раза больше гравитационного. Сила тяжести очень велика, без общей теории относительности не обойтись.

Теперь становится ясно, почему не могут существовать «адские звезды». Если их размеры меньше размеров атома, то они подавно меньше гравитационного радиуса, и сила тяжести в таких звездах должна быть бесконечно большой. Но звезду удерживает в равновесии газовое давление. Значит, и газовое давление должна быть бесконечно велико, чтобы уравновесить тяжесть. Чтобы давление было бесконечным, нужна бесконечно большая плотность вещества. Но плотность бесконечна, если тело сжато в точку. А это невозможно. И потому газ в нашей звезде имеет вполне конечную плотность. Вычислим ее. Сожмем Солнце до размеров его гравитационного радиуса — 3 км. Разделим массу Солнца, равную 2*1033 г, на объем шара радиусом 3 км и получим, что плотность такого шара равна 2*1016 г/см3. Конечно, это очень много — 20 миллиардов тонн в кубическом сантиметре. Но ведь не бесконечно много! А сила тяжести на поверхности такой звезды именно бесконечна. И значит, никакое газовое давление в принципе не удержит в равновесии звезду, радиус которой равен радиусу Шварц-шильда. Сила тяжести начнет распоряжаться бесконтрольно. И вещество звезды под действием тяжести начнет падать… падать… падать…

Задача, которую решил Шварцшильд, долго казалась астрономам чисто академической, не имеющей отношения к реальным небесным явлениям, хотя объекты, о которых шла речь у Шварцшильда, и назывались звездами. Больший интерес к этой задаче проявляли физики, но и их в астрономии больше интересовала важная, но чисто физическая проблема источников звездной энергии. Один из пионеров таких исследований — замечательный советский физик Л. Д. Ландау. Его небольшие заметки об источниках энергии звезд подействовали на физиков сильнее, чем эффектные предсказания астронома Цвикки. Именно статьи Ландау были стимулом, побудившим Р. Оппенгеймера и его сотрудников обратиться к исследованию строения нейтронных звезд.

Первая заметка Ландау появилась в 1932 году — еще до сообщения об открытии нейтрона. Называлась она «К теории звезд». Ландау поставил вопрос: какой может быть масса звезды, состоящей из вырожденного ферми-газа? Чандрасекар поставил тот же вопрос раньше и ответил на него (судя по всему, Ландау не знал о работе индийского ученого, поскольку ни словом о ней не обмолвился — пример отсутствия контактов между физиками и астрофизиками). Но Ландау пошел дальше. Он писал: «При М > М0 во всей квантовой теории не существует причины, которая предотвратила бы коллапс системы в точку». Именно то, о чем мы только что говорили! В 1937 году Ландау вновь обратился, к теории звезд, опубликовав статью «Об источниках звездной энергии». Нейтроны уже были известны. Нейтронный газ можно сжать значительно сильнее, чем газ из протонов и электронов, ' ведь нейтроны не заряжены, между ними не действуют силы электрического отталкивания. Естественно был поставлен вопрос: а если?

А если звезда состоит из нейтронов? А если во всех звездах есть нейтронные ядра? А если эти нейтронные ядра и являются источниками звездной энергии?

Такие вопросы поставил Ландау в своей статье. На первый из вопросов ответили американские физики Оппенгеймер и Волков через год после того, как прочитали статью советского ученого. Интересно, что Оппенгеймер с Волковым тоже не обратили внимания на работу Бааде и Цвикки!

Оппенгеймер и Волков первыми решили задачу о том, как может выглядеть нейтронная звезда, какова ее структура. И помогла им в этом общая теория относительности. Допустим, сказали они, что звезда целиком состоит из нейтронов. В нейтронном газе существует давление вырождения, которое в принципе способно уравновесить поле тяжести. Уравновесить в любой точке звезды. Но чему равна сила тяжести в любой точке звезды? Чтобы рассчитать это, Оппенгеймер и Волков применили общую теорию относительности. И уравновесили тяжесть давлением вырожденного нейтронного газа. Не простого газа, а идеального! Впрочем, в физике именно идеальный газ и является самым простым для расчетов. В идеальном газе частицы друг с другом не взаимодействуют, и это существенно упрощает вычисления.

Всегда ли давления идеального вырожденного нейтронного газа достаточно для того, чтобы поддержать равновесие звезды? Нет, ответили Оппенгеймер и Волков. Не может существовать нейтронная звезда с массой большей, чем 0,7 массы Солнца. Это меньше предельной массы белого карлика! Впрочем, эта странность не заинтересовала Оппенгеймера с Волковым, как не интересовали их и сами белые карлики — астрофизические проблемы были им чужды. Как бы то ни было, в 1938 году физики теоретически доказали: да, нейтронные звезды могут существовать.

Правда, сами Оппенгеймер и Волков не очень, надеялись, что их теоретические расчеты когда-нибудь реализуются в астрономических открытиях. Они писали:

«Представляется неправдоподобным, чтобы статические нейтронные ядра играли большую роль в звездной эволюции».

Важность проблемы была таким образом снята, и сама задача стала выглядеть не более чем физическим ребусом.

Но ребус этот не был еще решен окончательно. Что же случится с нейтронной звездой, если масса ее окажется больше найденного предела 0,7 массы Солнца? «Звезда будет бесконечно сжиматься», — сказали Оппенгеймер и Волков, повторив слово в слово вывод, сделанный ранее Ландау. Но что стоит за этими словами?

За этими словами стояло предсказание черных дыр.

О звездах, с поверхности которых не может улететь свет, писали в свое время Мичелл и Лаплас. Но физика черных дыр гораздо богаче! И прежде всего, черная дыра — объект не только невидимый, но принципиально нестационарный. Вот это впервые сказали Оппенгеймер и Волков. А несколько месяцев спустя Оппенгеймер и Снайдер впервые описали, как должна выглядеть черная дыра для нас, наблюдающих с Земли, и для гипотетического космонавта, падающего вместе с веществом звезды к ее центру.

Оказывается, далеко не все равно — откуда смотреть!

Одно и то же явление может протекать по-разному, если наблюдать его из различных физических систем отсчета, — так утверждает теория относительности. Время, как вы знаете, сокращается, если двигаться со скоростью, близкой к скорости света. Но если и вы, и космонавт в ракете движетесь равномерно и прямолинейно, то как узнать, кто из вас имеет субсветовую скорость, а кто — черепашью? С вашей точки зрения, летит он, а с его точки зрения, летите вы. С вашей точки зрения, быстрее состариться должны вы, а с его точки зрения — он. Как это проверить? Вам нужно опять встретиться и сравнить показания часов. Но встретиться-то вы не можете — ведь и вы, и он летите равномерно и прямолинейно в разных направлениях. Чтобы иметь возможность встретиться, кто-то из вас должен развернуться и полететь в обратном направлении. Но тот, кто начнет разворачивать свой корабль, сразу испытает действие ускорения. Тот же, кто летит по-прежнему, никаких ускорений не испытает. А ускорение, согласно принципу эквивалентности, то же самое, что и поле тяжести. Значит, можно считать, что тот, второй космонавт, вовсе не разворачивал звездолет, включая двигатели, а просто оказался на время в поле тяжести какого-то тела. В поле тяжести — мы уже говорили об этом — часы идут медленнее, даже световые колебания совершаются с меньшей частотой. И чем больше ускорение при развороте (то есть чем больше поле тяжести), тем больше замедление времени. Когда вы снова встретитесь с космонавтом, который улетел и вернулся, окажется, что именно он остался молодым — ведь именно его, а не ваши часы шли медленнее…

Поделиться:
Популярные книги

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Дорога к счастью

Меллер Юлия Викторовна
Любовные романы:
любовно-фантастические романы
6.11
рейтинг книги
Дорога к счастью

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Адепт. Том 1. Обучение

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
9.27
рейтинг книги
Адепт. Том 1. Обучение

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II