Загадки для знатоков. История открытия и исследования пульсаров
Шрифт:
Пользуясь фантограммой, можно сейчас сделать то, чего не сделали астрофизики в середине шестидесятых годов. Объединим все известные в то время свойства нейтронных звезд. Вот, что получится:
1. Нейтронная звезда вращается, и период ее вращения может быть намного меньше секунды.
2. У нейтронной звезды сильнейшее магнитное поле — десятки миллиардов гауссов.
3. Нейтронная звезда способна генерировать быстрые частицы, которые, попадая в сильнейшее магнитное поле, должны излучать.
4. Ось вращения нейтронной звезды может не совпадать с осью ее магнитного дипольного поля.
5. Вращающийся магнитный диполь (звезда) может быть источником излучения.
6. И главное — нейтронная звезда может быть активной.
Используя прием объединения, получим, что нейтронная звезда должна
Сейчас ученые строят фантограммы подсознательно, интуитивно делается и выбор. А цель в том, чтобы научиться сознательно возводить фантограммы, название которым — открытия. Разобраться в правилах, усвоить приемы, выявить типичные противоречия и способы их устранения. Потом можно и «забыть» все это, опять свести поиск и выбор к автоматизму. Но — к осознанному автоматизму.
Представьте себе водителя, который, не умея управлять машиной, едет, полагаясь лишь на интуицию, по дороге, вымощенной открытиями. И представьте другого водителя, который изучил свою машину в совершенстве, умеет управлять ею так, что это стало его второй натурой, ушло в подсознание. Этот водитель тоже полагается на интуицию. Оба едут, любуясь дорогой, отдавшись движению в незнаемое. От открытия к открытию. Но кто едет быстрее? И в какую машину сели бы вы, читатель?
Глава седьмая
Открытие пульсаров. Маленькие зеленые человечки! Космический прожектор. Пульсар в Крабовидной туманности. Звездотрясения. Развитие научных систем
Вод, в которые я вступаю, не пересекал еще никто.
Английский радиоастроном Э. Хьюиш в 1948 году заинтересовался проблемой распространения радиоволн в прозрачной неоднородной среде. Это очень интересная и важная для астрофизики проблема.
Почему мерцают звезды? Свет, проходя сквозь толщу земной атмосферы, встречает на своем пути неоднородности воздушного океана — разрежения, уплотнения, вызванные движениями воздуха. Из-за этого свет рассеивается, и нам представляется, что звезда становится то ярче, то слабее — мерцает. А радиозвезды? В 1948 году набирала силы радиоастрономия, были открыты радиозвезды — точечные, подобные звездам, источники радиоизлучения. Радиоволны, как и видимый свет, проходят сквозь неспокойную земную атмосферу. Радиозвезды тоже должны мерцать. Разница в том, что мерцания радиозвезд вызываются неоднородностями иного размера, расположенными на иной высоте. Э. Хьюиш и занялся исследованием радиомерцаний. Эта работа поглотила двадцать лет его жизни.
Э. Хьюиш был первым, кто сказал: радиозвезды мерцают не только потому, что радиоволны рассеиваются в земной атмосфере. Они мерцают и потому, что радиоволны проходят через межпланетное пространство. Ведь оно вовсе не пусто — оно заполнено плазмой солнечного ветра, и неоднородности в этой разреженной плазме тоже способны вызвать колебания яркости далеких радиоисточников.
Идея Э. Хьюиша была подтверждена в 1964 году, а год спустя Э. Хьюиш начал проектировать для Кембриджской обсерватории новый радиотелескоп с площадью антенн 18 тысяч м2. Мерцания радиоисточников заметнее всего на длинных волнах — чем короче длина волны, тем слабее мерцания. Поэтому Э. Хьюиш выбрал для наблюдений довольно длинную волну 3,7 метра. Он сконструировал радиотелескоп сам. Сам же и построил — с помощью своих сотрудников и аспирантки Ж. Белл. Телескоп был не из самых сильных, к тому же кустарно сделанный. Достоинством, выделявшим этот радиотелескоп среди других таких инструментов, было то, что с его помощью можно было исследовать быстрые мерцания радиоисточников. Приборы были способны регистрировать изменения сигнала, продолжавшиеся десятые
А теперь слово самому Э. Хьюишу, рассказавшему о своем открытии в Нобелевской лекции 1975 года.
«Радиотелескоп закончен был и испытан к июлю 1967 г., и нами был немедленно начат обзор неба… Фактически мы наблюдали всю доступную область неба с интервалом в одну неделю. Для обеспечения непрерывного контроля данного обзора мы решили наносить на карту неба положения (сразу же после анализа каждой записи) мерцающих радиоисточников и добавлять к ним точки, когда наблюдения повторялись через неделю. Таким образом, истинные точки можно было отличать от электрических помех, поскольку последние вряд ли могли повторяться на одних и тех же небесных координатах. Надо отдать должное Белл, которая смогла справиться с потоком бумаги от четырех самописцев.
Однажды, где-то в середине августа 1967 г., Жаклин показала мне запись флюктуирующего сигнала, который мог быть слабым источником, мерцающим, когда наблюдался в противоположном к Солнцу направлении. Это было необычно, так как сильное мерцание редко происходило в этом направлении, и мы сначала подумали, что принятый сигнал является электрической помехой. К концу сентября записи проводимого обзора показали, что источник детектировался несколько раз, хотя он и отсутствовал иногда, и я стал подозревать, что мы обнаружили вспыхивающую звезду, может быть, типа карлика класса М, которые в то время исследовал Ловелл. Однако положение источника все же менялось по прямому восхождению вплоть до 90°, и это было необъяснимой загадкой. Мы установили высокоскоростной самописец, чтобы изучить природу флюктуирующих сигналов, но не достигли успеха, так как интенсивность источника упала ниже нашего предела детектирования. В течение октября этот самописец использовался для заранее запланированных наблюдений другого источника (ЗС 273) в целях проверки некоторых аспектов теории мерцаний, и лишь 28 ноября мы получили первое доказательство, что наш загадочный источник излучает регулярные импульсы с интервалом чуть больше одной секунды. Я не мог поверить, что какой-нибудь естественный источник способен излучать таким образом, и сразу же обратился к астрономам других обсерваторий с вопросом, не экспериментируют ли они с приборами, могущими создавать электрические помехи во вполне определенное звездное время около 19 ч 19 мин.
В начале декабря интенсивность источника увеличилась, и его импульсы стали отчетливо выделяться над шумовым фоном. Зная, что сигналы в виде импульсов позволяют установить электрическую фазу, я пересмотрел записи нашего обзора. Этот пересмотр показал, что в действительности небесные координаты источника не менялись. Все еще будучи скептически настроенным, я подготовил устройство, которое через каждую секунду отмечало точное время, используя сигналы службы времени (MSF Rugby Time Service), и с 11 декабря были начаты ежедневные наблюдения. К моему удивлению, в пределах ошибки наблюдения 0,1 с сравнение записи сигналов с регулярным графиком показало, что пульсирующий источник дает сигналы с точностью <1*10—6 с. В это время мои коллеги Пилкингтон, а также Скотт и Коллинз совершенно независимыми методами обнаружили, что сигнал характеризуется быстрым изменением частоты (порядка — 5 Мгц/с). Из этого следовало, что продолжительность каждого импульса (при данной радиочастоте) равна примерно 16 мс.
Не видя никаких разумных «земных» объяснений для этих радиоимпульсов, мы стали предполагать, что их может генерировать лишь какой-нибудь источник, находящийся далеко за пределами Солнечной системы, а кратковременность каждого импульса заставляла думать, что источник по своим размерам не может быть больше небольшой планеты. Мы допускали вероятность того, что сигналы могли действительно генерироваться на планете, обращающейся около далекой звезды, и что они могли быть искусственными по происхождению. Я знал, что измерения времени, если их выполнять несколько недель, выявят любое орбитальное движение источника вследствие Допплер-эффекта, и, следовательно, до окончания таких измерений я должен был хранить полнейшее молчание по поводу нашего открытия. Эти недели в декабре 1967 г. были самыми волнующими в моей жизни».