Чтение онлайн

на главную - закладки

Жанры

Занимательно о космогонии
Шрифт:

Итак, 18 членов солнечной системы. Каждое из них, если считать его абсолютно твердым, то есть не подверженным никаким деформациям, обладает степенями свободы. Это, конечно, понятно — ведь они могут не только двигаться в трех различных направлениях, но и вращаться вокруг трех взаимно перпендикулярных осей. Следовательно, для определения положения тела в пространстве мы должны в каждый момент времени задавать числовые значение 3 координат и 3 углов поворота. Всего 6 неизвестных. Однако сам процесс движения характеризуется скоростью изменения во времени всех этих 6 величин. Значит, еще 6 неизвестных. Помножив 12 неизвестных на 18 членов солнечного семейства, мы получаем миленькую системку с 216 неизвестными.

А теперь пусть читатель вспомнит, как прогрессировали

трудности и регрессировали отметки в дневнике, когда он в школе от решения уравнения с одним неизвестным переходил к решению системы уравнений с двумя неизвестными, потом с тремя и так далее… А в нашем случае неприятности на количестве неизвестных еще далеко не кончаются. Для точного решения желательно учесть еще и то, что ни одно из небесных тел не является абсолютно твердым. А изменения фигуры тела, приливы и отливы меняют и скорость его вращения, и направления осей вращения; изменяется сила взаимного притяжения и нарушаются орбиты спутников. А кроме того, существуют еще электрические и магнитные силы; Солнце ежеминутно теряет массу, которую приобретают планеты; влияет межпланетная среда и суммарное гравитационное действие звезд Галактики; и еще, пусть читатель поверит на слово, многое-многое, что оказывает влияние на «положение и движение небесных тел в любой момент времени». Даже если учесть, что в XVIII веке половина из указанных причин была неизвестна, решение сформулированной задачи представляло собой непреодолимые трудности. Надо было найти такой упрощенный ее вариант, который, с одной стороны, был бы более близок к истине, чем «задача двух тел», а с другой — практически разрешим. В математике такие задачи называются «модельными».

В солнечной системе главной силой, определяющей движения планет, является, конечно, притяжение Солнца. Из влияний планет следует, пожалуй, учесть только влияние Юпитера: он наиболее массивен. Остальными возмущениями для случая «модельной задачи» можно пренебречь. Так специалисты пришли к «задаче трех тел».

К сожалению, общее решение ее оказалось тоже настолько сложным, что до начала XX столетия существовало мнение о невозможности его получения. Почти все крупные математики, астрономы и механики пробовали на этой задаче свои силы. И не безрезультатно. Были получены очень интересные решения для частных упрощенных случаев, которые сыграли важную роль в развитии науки. Особенно много сделали пять выдающихся математиков, живших примерно в один исторический период.

Прежде всего это член Петербургской академии наук Л. Эйлер (1707–1783). За ним следуют французы — члены Парижской академии: А. Клеро (1713–1765), Ж. Лерон (1717–1783), принявший по достижении совершеннолетия фамилию д’Аламбер, и Ж. Лагранж (1736–1813). Все они занимались с тем или иным успехом решением «задачи трех тел» в приложении ее к теории Луны, рассматривая взаимные влияния трех небесных тел: Солнца, Земли и Луны.

Последним членом «Великолепной пятерки» математиков был П. Лаплас (1749–1827). С него начинается новый период в космогонии, и потому на жизни и деятельности этой колоритнейшей фигуры бурной эпохи французской революции мы остановимся подробнее.

Пьер-Симон Лаплас и седьмое примечание к «Изложению системы мира»

П. Лаплас родился на севере Франции в крестьянской семье. Выдающиеся способности мальчика побудили состоятельных соседей помочь ему окончить школу Ордена бенедиктинцев. Трудно сказать, какие знания вынес П. Лаплас из заведения святых отцов. Но то, что именно после школы он стал убежденным атеистом, — в этом сомнений нет никаких. В 17 лет он становится преподавателем высшей школы в родном городе Бомон и пишет несколько математических статей. Затем, заручившись рекомендательным письмом, отправляется в Париж к Ж. д’Аламберу. Однако известный математик скептически отнесся к провинциальной протекции. Тогда П. Лаплас в несколько дней пишет работу по основам механики и посылает ее Ж. д’Аламберу снова. Справедливость восторжествовала; и скоро молодой честолюбец оказывается принятым в штат преподавателей Парижской высшей школы.

Едва

утвердившись, П. Лаплас одну за другой пишет и посылает в Парижскую академию наук свои работы. Редкая настойчивость в сочетании с определенным математическим талантом привели к тому, что в 24 года он становится адъюнктом, а в 36 лет — действительным членом академии.

П. Лаплас как никто умел выделить главное в рассматриваемой проблеме; умел представить сложные явления природы в математической форме, сформулировать условия задачи и подобрать оригинальный метод ее решения.

Перечислить работы П. Лапласа трудно — настолько их много, и так они разнообразны. Однако, несмотря на фундаментальные исследования в области математики и физики, основная часть его работ относится к астрономии.

П. Лаплас доказал устойчивость строения солнечной системы, то есть постоянство орбит и неизменность средних расстояний планет от Солнца. Открыл причины периодических неравенств в движении Юпитера и Сатурна и решил для этого еще один частный случай знаменитой «задачи трех тел». Рассматривая теорию движения спутников Юпитера, он вывел законы, получившие его имя, и существенно дополнил лунную теорию. Можно сказать, что П. Лаплас фактически ее закончил, дав полный теоретический расчет движения Луны. Конечно, закончил в том смысле и на том уровне, который допускало состояние современной ему науки. Как итог его астрономических работ, следует назвать пятитомный «Трактат о небесной механике», в котором в последовательном изложении он объединил работы И. Ньютона, Л. Эйлера, Ж. д’Аламбера и А. Клеро и в котором сам П. Лаплас дает полное математическое объяснение движению тел солнечной системы.

«В конце прошлого века, — пишет он в предисловии к первому тому, — И. Ньютон опубликовал свое открытие всемирного тяготения. С тех пор математикам удалось все известные явления мироздания свести к этому великому закону природы и таким образом достичь в астрономических теориях и таблицах неожиданной точности. Моя цель состоит в том, чтобы представить с единой точки зрения теории, рассеянные по разным работам, соединив вместе все результаты по равновесию и движению твердых и жидких тел, из которых построена наша солнечная система и подобные системы, раскинутые в просторах вселенной, и построить таким путем небесную механику».

Этот трактат еще при жизни П. Лапласа стал классикой. И до наших дней многие идеи великолепной работы лежат в основе теоретической астрономии, а метод изложения служит образцом подхода к решению теоретических задач. Говорят, его последними словами перед смертью были: «Как ничтожно то, что мы знаем, по сравнению с безграничной областью непознанного». П. Лаплас, безусловно, был выдающимся ученым, великим ученым, великим математиком.

Как жаль, что оценка его личности и человеческого достоинства не может быть произведена теми же словами. У П. Лапласа был пренеприятный характер. Исключительно тщеславный, заносчивый и грубый по отношению к людям, стоящим ниже его по общественной лестнице и к коллегам, он терпеть не мог деликатного Ж. Лагранжа и ссорился с А. Лавуазье. Пожалуй, единственный человек в академии, к которому он относился более или менее прилично, был Ж. д’Аламбер.

П. Лаплас поддерживал республику, превознося свободу, равенство и братство. Но когда Наполеон стал первым консулом, проницательный математик выпросил у него должность домашнего секретаря. Уволенный через шесть недель за неспособность к этой работе, он был в утешение назначен членом сената. П. Лаплас посвятил третий том своей «Небесной механики» «Героическому умиротворителю Европы», добившись от императора Наполеона графского титула. Но уже несколько лет спустя голосовал за низложение своего кумира и радостно встретил восстановление Людовика XVIII. Готовый признать и отрицать все что угодно ради очередной орденской ленты, он позже и от короля получил звание маркиза и титул пэра Франции.

Поделиться:
Популярные книги

Камень. Книга вторая

Минин Станислав
2. Камень
Фантастика:
фэнтези
8.52
рейтинг книги
Камень. Книга вторая

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели