Занимательно о железе
Шрифт:
Низкие температуры, столь опасные для прочности обычного металла, оказалось возможным использовать для улучшения свойств самой стали: повышения твердости и вязкости, жесткости и упругости. Еще в 20-х годах XIX века П.П. Аносов проводил опыты с закалкой кос при температурах — 5 и 18 градусов по Реомюру. Опыты дали положительные результаты.
В наше время применение обработки холодом для дополнительного упрочнения некоторых сталей впервые предложил профессор А.П.Гуляев в 1937 году. Через 5 лет первые попытки использовать глубокий холод были произведены в США. Советский академик А.А. Бочвар в 1945 году обнаружил в зоне фазового превращения металлов “сверхпластичность” сплава цинка с алюминием. Исследователи
Исследования в области низкотемпературного материаловедения ведутся в разных странах и сейчас. Ученые Физико-технического института АН УССР доказали теоретически и экспериментально, что постоянное упрочнение можно получить, подвергая металл механической обработке не при нагреве, а при глубоком охлаждении. Специально сконструированная машина позволила производить деформацию образцов при температуре около — 270°С. С помощью экспериментов удалось выяснить, что при низкотемпературной деформации металлы приобретают очень мелкую и однородную структуру, способствующую значительному повышению жаропрочности вплоть до температуры красного каления. Встряска, которую получает кристаллическая решетка раскаленного металла, опущенного в тигель с жидким азотом, сравнима, пожалуй, с последствиями нокаутирующего удара на ринге. Однако результаты здесь обратные: кристаллическая решетка перестраивается таким образом, что прочность металла становится на порядок выше.
Царство жаропрочных материалов
Современный авиационный реактивный двигатель является выдающимся творением техники. Вал его компрессора делает 15 000 тысяч оборотов в минуту. Центробежные силы стремятся вырвать лопатки, которые вращаются со скоростью, вдвое превышающей скорость звука, и выдерживают на себе адскую центробежную силу: больше ста тонн. Температура в камере сгорания более 1500°С. Здесь царство жаростойких материалов — последних достижений современной металлургии.
Наиболее ответственные детали газовой турбины — диски. Мало того, что они должны выдерживать ураганный натиск горячего газа, от них требуется еще и высокая точность изготовления. Традиционно их куют и штампуют из слитка, а после того нужна еще и трудоемкая механическая обработка. Всесоюзным научно-исследовательским и проектно-конструкторским институтом металлургического машиностроения совместно со Всесоюзным научно-исследовательским институтом легких сплавов предложен новый способ изготовления дисков. Теперь их прессуют из порошков-гранул в специальных аппаратах — газостатах. Гранулы жаропрочных никелевых сплавов помещают в герметизированную капсулу и прессуют при высокой температуре. В роли пресса выступает инертный газ аргон. Равномерное обжатие капсулы позволяет получить высокую плотность изделия в любой точке. В результате ресурс двигателя увеличивается в 1,5–2 раза.
Современная техника требует все более стойких материалов по жаропрочности. Повышение экономичности агрегатов в теплотехнике зависит и от металлургов. Советские конструкторы разработали турбины мощностью более 1 миллиона киловатт. Они заявляют, что если металлурги решат проблему создания соответствующих жаростойких материалов, то станет реальной возможность создания газовой турбины с начальной температурой пара в 1200–1400°С. Это дало бы возможность повысить коэффициент полезного действия турбины на 8–10%.
До 1941 года в СССР выплавляли нержавеющую, окалиностойкую и жаропрочные стали около 20 марок и только три марки сплавов на никель-кобальтовой основе. В послевоенные годы была освоена металлургия жаропрочных сплавов на никелевой основе. Теперь производство жаропрочных сталей широко налажено. Их рабочие температуры в пределах 500–750°С.
В группу жаропрочных включены стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение длительного времени и обладающие при этом достаточной окалиностойкостью. К сталям условно отнесены все сплавы с содержанием железа более 45%. Сплавы, содержащие в сумме железа и никеля более 65% при соотношении железа и никеля 1: 1,5, отнесены к сплавам на железо-никелевой основе. Основная структура этих сплавов состоит из твердых растворов хрома и других легирующих элементов в железо-никелевой основе. Бывают также сплавы на железной и кобальтовой основе. Присадки в них хрома и других легирующих элементов при высоких температурах дают большую прочность. Особенно широкое применение зги сплавы получили в течение последних десятилетий в связи с развитием газовых турбин различного назначения. Сплавы применяют при изготовлении многих деталей газовых турбин реактивной авиации, судовых газотурбинных установок, в оборудовании для перекачивания нефти и газопродуктов, в нагревательных металлургических печах.
Для деталей, работающих при очень высоких температурах в течение короткого времени (в ракетах, управляемых снарядах, космической аппаратуре), разработаны жаропрочные материалы на основе тугоплавких металлов, неметаллических соединений и комбинации неметаллических материалов с металлами.
Жаростойкие детали изготовляются также из смеси неметаллических соединений и металлов, но основой является металл, а соединения при этом распределяются в его объеме более или менее равномерно в виде дисперсных частиц. Впервые такие смеси были изготовлены с добавкой 0,5–20% оксида алюминия. Теперь такие смеси изготовляются на основе различных металлов.
Академик Н.М. Жаворонков отмечает, что работы по жаропрочным сталям должны быть дополнены исследованиями сплавов и материалов на основе хрома, молибдена, вольфрама, ниобия, тантала и рения. Предлагается шире использовать в качестве жаропрочных материалов оксиды металлов, карбиды и нитриды.
ЖЕЛЕЗО В НАУЧНО-ТЕХНИЧЕСКОЙ РЕВОЛЮЦИИ
Возможности традиционных процессов
Научно-техническая революция, начавшаяся в середине XX века, с каждым десятилетием шире и глубже охватывает все направления современной техники. Она оказывает глубокое влияние и на черную металлургию — одну из отраслей промышленности, производящую важнейшие конструкционные материалы. Металлургия является производством, обеспечивающим технический прогресс в материалопотребляющих отраслях. Одновременно металлургия в ходе НТР претерпевает значительные изменения, стремясь к повышению эффективности своего производства.
Потребность в черных металлах по-прежнему велика. Но обратите внимание на парадоксальный факт: в период научно-технической революции мы получаем сталь с помощью процессов, открытых более века назад: мартеновского (1864 год) и конверторного (1856–1878 годы). Развитие металлургии за этот период шло экстенсивно за счет непрерывного увеличения емкости и числа агрегатов, ускорения процессов в них.
Чем же все-таки объясняется “живучесть” старых процессов? Главная причина в современных условиях — их экономичность.