Чтение онлайн

на главную

Жанры

Защита от хакеров корпоративных сетей

авторов Коллектив

Шрифт:

Подобный шифру Цезаря алгоритм ROT13 (алгоритм сдвига символов на 13 позиций английского алфавита – примитивный способ скрытия электронных посланий от посторонних глаз) используется в системах UNIX до сих пор. Он не годится для хранения секретов в тайне. Алгоритм ROT13 больше подходит для скрытия решений ребусов, шуточных посланий и потенциально оскорбительного текста. Если же подобный текст будет расшифрован, то ответственность за возможно нанесенную обиду ляжет не на отправителя, а на того, кто расшифровал его. Например, мистер G. может получить приведенное ниже сообщение, расшифровав которое он, возможно, оскорбится. Но в зашифрованном виде сообщение никого обидеть не может: V guvax Jvaqbjf fhpxf.

Алгоритм ROT13 очень прост, для того чтобы с ним можно было работать с карандашом в руке и листком бумаги. Достаточно написать алфавит в два ряда со смещением второго ряда на тринадцать букв относительно первого:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NOPQRSTUVWXYZABCDEFGHIJKLM

Типы

криптосистем

В криптографии используется два типа криптосистем: симметричные и асимметричные. В симметричных криптосистемах используются более длинные ключи, причем один и тот же ключ используется как для зашифровки, так и для расшифровки текста. Такой ключ называется секретным ключом, и его следует хранить в тайне из-за того, что любой владелец секретного ключа может расшифровать данные, зашифрованные этим же ключом. Большинство симметричных криптосистем используются много лет и хорошо известны. Единственное, что действительно является тайной, – это используемый ключ. Практически все действительно полезные алгоритмы, применяемые на практике сегодня, полностью открыты обществу.

...

Инструментарий и ловушки…

Оценка криптостойкости алгоритма

Проверить алгоритмическую безопасность криптографического алгоритма можно, только атакуя его. Поскольку намного чаще подвергаются атаке криптографические алгоритмы, опубликованные в открытой печати, то чем дольше алгоритм доступен для всеобщего изучения, тем больше будет предпринято попыток перехитрить или взломать его. Ненадежные криптографические алгоритмы взламываются очень быстро, обычно за несколько дней или месяцев, в то время как криптостойкие алгоритмы шифрования могут десятилетиями оставаться неприступными. В любом случае, открытость алгоритма для публичного анализа – важное условие доказательства его безопасности. Хотя если отсутствуют какие-либо сведения о сложности используемых в криптосистеме алгоритмов, то взломать криптосистему сложнее (вне зависимости от криптостойкости используемых в ней алгоритмов). Но при использовании общеизвестного алгоритма всегда есть некоторые предположения относительно его безопасности. Отчасти взлом алгоритма противоречит праву собственности на него. Однако слабый алгоритм может быть взломан, даже если криптограф до конца его и не понял. Очевидно, следует доверять запатентованным алгоритмам только в рамках их долгосрочных обязательств. Именно из-за необходимости тщательного изучения внутреннего устройства алгоритмов для обеспечения их безопасности многие из применяемых на практике запатентованных алгоритмов, как, например, RC6 компании RSA Laboratories, общедоступны.

Применению симметричных криптографических алгоритмов присущ ряд проблем. Во-первых, где гарантия, что отправитель и получатель используют один и тот же ключ для зашифровки и расшифровки сообщений? Обычно для обеспечения идентичности ключей отправителя и получателя пользуются услугами курьерской службы или каким-либо другим средством пересылки ключей. Во-вторых, что делать, если у получателя не окажется ключа, которым были зашифрованы принимаемые данные? Например, представьте себе ситуацию, когда ключ симметричной криптосистемы, реализованной аппаратными средствами, изменяется каждое утро в 4.00 на приемном и передающем конце. Что произойдет, если на одном из концов «забудут» изменить ключ в нужное время (вне зависимости от того, как это будет реализовано: при помощи полоски ленты, дополнительной аппаратуры или каким-либо другим способом) и передадут зашифрованные старым ключом данные, а на приемной стороне ключ будет изменен? Получатель, используя правильный ключ, не сможет расшифровать принятые данные. В результате во время кризиса могут возникнуть проблемы. Особенно если старый ключ был удален. Этот простой пример показывает, к чему может привести использование получателем и отправителем разных ключей шифрования.

Асимметричные криптосистемы – относительно новое направление в криптографии, возможно, более известное под синонимом криптография с открытым ключом. В асимметричных криптосистемах используются два различных ключа: открытый ключ – для зашифровки сообщения и секретный (личный) – для расшифровки. Уитфилд Диффи (Whitfield Diffie) и Мартин Хеллман (Martin Hellman) первыми заявили о криптографии с открытым ключом в 1976 году, опубликовав метод обмена ключами в системе с секретными ключами. Опубликованный ими алгоритм, впоследствии названный алгоритмом Диффи-Хеллмана (DH-алгоритмом), будет рассмотрен в этой главе. Хотя большинство считает В. Диффи и М. Хеллмана авторами криптографии с открытым ключом, тем не менее некоторые отдают приоритет английской

разведке BSS (British Secret Service), поскольку якобы за несколько лет до публикации В. Диффи и М. Хеллмана BSS уже знал об аналогичном методе. Правда, предполагается, что BSS после изобретения алгоритма нигде его не использовал. Подробнее об этом читатель сможет узнать по адресу: www.wired.com/wired/archive/7.04/crypto_pr.html.

Некоторое время спустя криптография с открытым ключом стала популярной благодаря Филу Зиммерману (Phil Zimmerman), который в августе 1991 года выпустил версию 1.0 программы «Pretty Good Privacy» (PGP) для DOS. В 1993 году, после выпуска версии 2.3 программы PGP, была добавлена поддержка других платформ, в том числе UNIX и Amiga. С течением времени программа PGP была усовершенствована и распространялась многочисленными фирмами, включая ViaCrypt и PGP, Inc., которые в настоящее время вошли в состав Network Associates. Доступны как коммерческие, так и свободно распространяемые (для некоммерческого использования) версии программы PGP. Жители Соединенных Штатов и Канады могут получить свободно распространяемую версию программы с сайтаКоммерческая версия может быть куплена на сайте Network Associates www.pgp.com.

Стандарты алгоритмов шифрования

Почему так много алгоритмов шифрования? Почему не стандартизируют один из них? Учитывая большое количество алгоритмов шифрования, следует признать, что на этот вопрос нельзя дать простой ответ. Максимум, что возможно, – это достичь компромисса между безопасностью, скоростью и удобством применения. В данном случае под безопасностью алгоритма понимается его способность противостоять как современным атакам, так и атакам в будущем. Скорость алгоритма характеризует его возможности по обработке данных и выражается временем, которое необходимо затратить на зашифровку и расшифровку сообщений. И наконец, под удобством применения понимается удобство реализации алгоритма программным или аппаратным способом. Каждый алгоритм хорош по-своему и ни один из них не идеален. В этой главе будут рассмотрены пять алгоритмов, с которыми чаще всего приходится иметь дело: стандарт шифрования данных DES (Data Encryption Standard), улучшенный стандарт шифрования AES [Rijndael], международный алгоритм шифрования данных IDEA (International Data Encryption Algorithm), алгоритм Диффи-Хеллмана и алгоритм RSA. Но знайте, что есть и другие алгоритмы, которые ничем не уступают названным.

Симметричные алгоритмы

В этой секции будет рассмотрено несколько наиболее типичных представителей класса симметричных алгоритмов: DES, его преемник AES и Европейский стандарт IDEA. Имейте в виду, что криптостойкость симметричных алгоритмов определяется прежде всего размером используемых в алгоритме ключей и числом циклов алгоритма. Все симметричные алгоритмы теоретически уязвимы к атакам «грубой силы», в основе которых лежит перебор всех возможных ключей. Но часто подобные атаки технически неосуществимы. Детально они будут обсуждены далее в главе.

Алгоритм DES

Стандарт шифрования данных (алгоритм) DES – один из старых и наиболее известных алгоритмов шифрования, который был изобретен корпорацией IBM и был американским правительственным стандартом с 1976 до 2001 года. В значительной степени DES основан на алгоритме Люцифер (Lucifer) Хорста Фейстеля (Horst Feistel), который не получил широкого распространения. Существенно то, что в алгоритме DES используется единственный 64-битовый ключ: 56 бит значащие и 8 бит – проверочные биты для контроля на четность. Алгоритм обрабатывает блоки данных порциями по 64 бита. Ключ разбивается на 16 отдельных 48-битовых подключей по одному на каждый раунд, который называется циклом Фейстеля (Feistel cycles). На рисунке 6.1 показана схема работы алгоритма DES.

Рис. 6.1. Схема алгоритма шифрования DES

В каждом раунде выполняются подстановка, во время которой биты данных заменяются битами ключа, и перестановка, во время которой замененные данные переставляются (перемешиваются). Операции перестановки, которые иногда называют перемешиванием, выполняются в S-блоках, а операции перестановки, иногда называемые операциями рассеивания, – в P-блоках. Два названных класса операций реализованы в «F-модуле» диаграммы. Безопасность DES чаще основывается на том, что операции перестановки нелинейные, поэтому зашифрованный текст ничем не напоминает исходное сообщение. Поэтому методы языкового анализа зашифрованного текста, которые обсуждаются далее в этой главе, не приводят к положительному результату. Операции перестановки повышают безопасность, дополнительно шифруя уже частично зашифрованное сообщение.

Поделиться:
Популярные книги

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Медиум

Злобин Михаил
1. О чем молчат могилы
Фантастика:
фэнтези
7.90
рейтинг книги
Медиум

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Сонный лекарь 4

Голд Джон
4. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 4

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая