Жар холодных числ и пафос бесстрастной логики
Шрифт:
т 3, ч. 1. М., 1971; т. 3, ч. 2. М., 1972. «Апология Сократа», о которой пойдет речь ниже, помещена в т. 1.
5
2. Платон. Сочинения, т. 1, с. 83—84.
6
3. Гиппократа, персонажа этого диалога Платона, не следует смешивать с его современником — знаменитым древнегреческим врачом Гиппократом Косским (прибл. 460—377 гг. до н. э.).
7
4.
8
5. См. А. Ф. Лосев. Комментарии.— В кн.: Платон. Сочинения, т. 2. с. 590.
9
6. Платон. Сочинения, т. 2, с. 404—405.
10
7. На эти слова Канта очень часто ссылаются, но очень редко их цитируют. Вот что дословно говорит Кант: «так как во всяком учения о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика» (И. Кант. Сочинения. В 6-ти т., т. 6. М., 1966, с. 59). Таким образом, кантовский тезис о «математичности» как мере научности был связан с общей априористской концепцией Канта.
11
8. Платон. Сочинения, т. 2, с. 416.
12
9. В переводе с греческого «органон» означает орудие (метод) исследования; под этим названием комментаторы Аристотеля объединили пять его сочинений по логике и методам научного познания: «Категории» (русск. перев. 1939 г.) «Об истолковании» (русск. дерев. 1891 г.), «Аналитики первая и вторая» (русск. перев. 1952 г.), «Топика» и «Опровержение софистических аргументов».
13
10. Аристотель. Аналитики первая и вторая. [М.], 1952, с. 14—15 (см. также примечения к русскому переводу с. 293).
14
11. Я. Лукасевич. Аристотелевская силлогистика с точки зрения современной формальной логики. Перев. с англ. М, 1959, с. 189, Ян Лукасевич в данной книге (вышедшей на англ. языке в 1951 г.) систематически исследовал силлогистику Аристотеля с позиций современной математической логики.
15
12. Аристотель создал не только силлогистику — в его трудах мы находим исследование дедуктивного метода (о котором речь пойдет в дальнейшем), логических модальностей (им изучалась логика рассуждений, в которых существенную роль играют модальные выражения «необходимо, что...», «возможно, что...», «невозможно» что...» и т. п.), определений, простейших обобщающих (индуктивных) умозаключений, аналогии, логических ошибок и до.
16
13. L. Falmar. Foundations of Mathematics, wether now?
– "Problems of the Philosophy of Mathematics" (Proceedings of the International Colloquiumin the Philosophy of Science, London, 1965, vol.1) Amsterdam, 1967, p.188. Из работ А. Сабо, обосновывающих этот тезис, укажем: А. Сабо. О превращении математики в дедуктивную науку и начале ее обоснования.— В кн.: Историко-математические исследования. Вып. XII. М., 1959.
17
14. О влиянии логико-методологических идей Аристотеля на древнегреческую математику см. С. А. Яновская. Из истории аксиоматики.— В кн.: С. А. Яновская. Методологические проблемы науки. М., 1972.
18
1. Дж. Свифт. Сказка бочки. Путешествия Гулливера. М., 1976, с. 293-294.
19
2. См. Ф. Рабле. Гаргантюа и Пантагрюэль. М., 1973, книга вторая, глава VIII (она содержит письмо Гаргантюа, в котором он рекомендует своему сыну Пантагрюэлю оставить без внимания астрологию и искусство Луллия как «науки пустые и лживые»).
20
3. В трактате «О достоинстве и преумножении наук» (1623) Ф. Бэкон сравнивал «искусство Луллия» с лавкой старьевщика, «где можно , найти множество тряпья, но нельзя найти ничего, что имело бы хоть какую-нибудь ценность» (Ф. Бэкон. Сочинения. В 2-х т.. т. 1. М., 1971, с. 349.
21
4. Предупреждаем, впрочем, что «искусство» Луллия было гораздо сложнее, чем может показаться из приведенного выше его краткого описания. Например, в его комбинаторике нашли свое место даже вопросительные предложения (заметим в этой связи, что логика вопросительных форм и по сей день остается мало разработанной). Читателя, желающего подробнее ознакомиться с логикой Луллия и его школы, мы отсылаем к книгам: В. Владиславлев. Логика. Обозрение индуктивных и дедуктивных приемов мышления и исторические очерки: логики Аристотеля, схоластической диалектики, логики формальной и индуктивной. Спб, 1881; Н. И. Стяжкин. Формирование математической логики. М.. 1967; М. Gardner. Logic Machines and Diagrams. New York - Toronto - London, 1958.
22
5. Большинство лейбницевых текстов логического содержания было впервые издано в 1901 и 1903 гг. Луи Кутюра. Впрочем, научное наследство Лейбница еще полностью не опубликовано; как отмечает И. С. Нарский в книге «Западноевропейская философия XVII века» (М., 1974, с. 281), в ганноверском архиве Лейбница хранится около 75 тысяч отдельных его работ.
23