Чтение онлайн

на главную

Жанры

Жизнь науки

Капица С. П.

Шрифт:

Знаменитый интерференционный опыт Физо [36] с текущей водой показывает, что при движении прозрачных тел их скорость передается находящемуся в них эфиру лишь частично. Этот опыт, позднее повторенный Майкельсоном и Морли [37] в больших масштабах, :не мог бы привести к наблюдаемому эффекту, если бы все содержимое труб имело бы одну и ту же скорость. Остается неясным лишь вопрос о поведении непрозрачных веществ и весьма протяженных тел.

36

Ann. de chim. et de phys., 1859, 57, 385; Pogg. Ann. 1853, 3, 457.

37

Amer. Journal of Science, 1886, 31, 377.

Следует

заметить, что проницаемость тела для эфира можно себе представить двояким образом. Это свойство могло бы отсутствовать у отдельных атомов и проявляться лишь при наличии больших количеств вещества — при условии, что размеры атомов весьма малы по сравнению с расстояниями между ними. Можно также предположить —и эту гипотезу я в дальнейшем возьму за основу,— что весомая материя абсолютно проницаема и что, в частности, эфир пронизывает также и атом; это, быль бы понятно, если бы атом можно было рассматривать как локальную модификацию эфира.

Я не собираюсь входить в детали подобных спекулятивных рассуждении или высказывать догадки о природе эфира. Мне хотелось бы по возможности воздержаться от предвзятых мнений об этом веществе и не приписывать ему, например, свойства обычных жидкостей и газов. Если

окажется, что наилучшее соответствие с явлениями достигается в предположении абсолютной проницаемости, то этим следует в данное время удовлетвориться, надеясь, что дальнейшие исследования смогут привести нас к более глубокому пониманию.

Само собой разумеется, что об абсолютном покое эфира не может быть и речи; это выражение даже не имеет смысла. Если я ради краткости говорю, что эфир покоится, то это значит, что одна часть этой среды не движется относительно другой и что все видимые движения небесных тел суть движения относительно эфира.

§ 2. С тех пор, как учение Максвелла стало распространяться все шире, вопрос о свойствах эфира приобрел большую важность и для теории электричества. Строго говоря, нельзя сколько-нибудь основательно проанализировать ни одного опыта, в котором движется заряженное тело или проводник с током, не касаясь покоя или движения эфира. В отношении каждого электрического явления возникает вопрос о влиянии движения Земли; что же касается влияния последнего на оптические явления, то от электромагнитной теории света надо требовать соответствия с уже установленными фактами. Теория аберрации принадлежит именно к тем разделам оптики, которые нельзя трактовать с помощью одних общих принципов волновой теории. Поскольку здесь участвует телескоп, нельзя не применить коэффициента увлечения Френеля для линз, а его значение следует вывести из специальных предположений о природе световых колебаний.

Два года тому назад я показал [38] , что электромагнитная теория света действительно приводит к коэффициенту, принятому Френелем. С тех пор я значительно упростил теорию и распространил ее на явления при отражении и преломлении, а также на двоякопреломляющие тела [39] .

Позвольте мне теперь вернуться к существу дела. Чтобы прийти к основным уравнениям для электрических явлений в движущихся телах, я примкнул к точке зрения, которую в последние годы разделяют многие физики; а именно, я предположил, что во всех телах имеются малые электрически заряженные материальные частицы и что все электрические явления обусловлены расположением и движением этих «ионов». Эта точка зрения в отношении электролитов является общепризнанной и единственно возможной; Глизе [40] , Шустер [41] , Аррениус [42] , Эльстер и Гейтель [43] высказывали мнение о том, что электропроводность газов также вызвана перемещением ионов. Мне представляется, что ничто не мешает сделать предположение о том, что молекулы диэлектрических тел также содержат заряженные частицы, привязанные к определенным положениям равновесия и смещающиеся только под действием внешних электрических сил; в этом и заключается «диэлектрическая поляризация» таких тел.

38

 Arch, neerl., 1892, 25, 363.

39

VersL Akad. Wet. Amsterdam, 1892—1893,1, 28 und 149.

40

Wied. Ann. 1882, 17, 538.

41

Proc. Royal Soc., 1884, 37, 317.

42

Wied. Ann., 1887, 32, 565; 1888, 33, 638.

43

Wiener Sitzungsberichte, 1888, 97, 1255.

Периодически изменяющаяся поляризация, соответствующая, согласно теории Максвелла, световому лучу, согласно этой точке зрения, сводится к колебанию ионов. Как известно, многие исследователи, находившиеся на позициях старой теории света, рассматривали участие весомой материи в колебаниях как причину дисперсии света. Это объяснение в основном сохраняется и в электромагнитной теории света, при этом ионам нужно только приписать определенную массу. Я показал это в моей старой работе где, однако, я выводил движение частиц из законов дальнодействия, в то время как сейчас я гораздо проще получаю то же из представлений Максвелла. Позже Гельмгольц [44] исходил в своей электромагнитной теории света из той же точки зрения [45] .

44

Wied. Ann., 1893, 48, 389.

45

Колачек (Коldсek. Wied. Ann., 1887, 32, 224 und 429) также сделал попытку объяснить, хотя и другим образом, дисперсию электрическими колебаниями в молекулах. Следует также упомянуть теорию Гольдхаммера.

Гизе [46] применил к различным случаям гипотезу о том, что в металлических проводниках электричество связано с ионами; однако данная им картина явлений в проводниках в одном пункте существенно отличается от представлений, принятых в отношении проводимости электролитов. В то время как частицы растворенной соли, как бы они ни задерживались молекулами воды, в конце концов могут перемещаться на большие расстояния, ионы в медной проволоке не обладают столь большой способностью к перемещениям. Тем не менее, здесь возможны передвижения на молекулярные расстояния, если предположить, что ион часто передает своп заряд другому иону или что два противоположно заряженных иона при своей встрече или после того, как они «связываются» друг с другом, обмениваются зарядами. Во всяком случае, такие явления должны происходить на границе двух тел, когда ток течет через эту границу. Если, например, из раствора соли на медной пластинке осаждаются и положительно заряженных атомов меди, и если мы считаем, что все это электричество связывается с ионами, то следует принять, что заряды переходят на и атомов в медной пластинке, или что 1/2 и выделяющихся частиц обмениваются зарядами с 1/2 и отрицательно заряженными атомами меди, уже находящимися в электроде.

46

Giеsе. Wied. Ann,, 1889, 37, 576.

Таким образом, предположение о переходе ионных зарядов или обмене ими (этот процесс еще весьма неясен) является неизбежным дополнением любой теории, которая предполагает перенос электричества ионами. Поэтому продолжительный электрический ток никогда не является только конвективным. По крайней мере, если расстояние между центрами двух соприкасающихся или связанных друг с другом частиц равно l, то движение электричества на расстояния порядка l происходит без конвекции;

если же это расстояние мало по сравнению с отрезком, на который происходит перемещение зарядов, то в целом существенна только конвекция.

Гизе придерживается мнения, что в металлах истинная конвекция вообще не играет роли. Поскольку ввести в теорию «перепрыгивание» зарядов кажется невозможным, то я вынужден полностью отказаться от рассмотрения этого процесса и представляю себе ток в металлической проволоке как движение заряженных частиц.

Дальнейшее исследование должно решить, сохранятся ли результаты теории при иных предположениях.

§ 3. Теория ионов весьма подходит для моей цели, поскольку она позволяет в уравнениях достаточно удовлетворительным образом учесть проницаемость тел для эфира. Эти уравнения естественно разбиваются на две группы. Во-первых, следует рассмотреть, как определяется состояние эфира зарядом, положением и движением ионов; затем, во-вторых, следует задать силы, с которыми эфир действует на заряженные частицы. В моей уже цитированной работе [47] я вывел соответствующие формулы с помощью принципа Даламбера, делая неточные предположения; этот путь имеет много общего с применением уравнений Лагранжа Максвеллом. Теперь же я ради краткости предпочитаю формулировать сами основные уравнения в качестве исходных гипотез.

47

Arch, neerl., 1892, 25, 363.

Поделиться:
Популярные книги

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Восход. Солнцев. Книга VII

Скабер Артемий
7. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга VII

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Король Руси

Ланцов Михаил Алексеевич
2. Иван Московский
Фантастика:
альтернативная история
6.25
рейтинг книги
Король Руси

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Книга пяти колец. Том 3

Зайцев Константин
3. Книга пяти колец
Фантастика:
фэнтези
попаданцы
аниме
5.75
рейтинг книги
Книга пяти колец. Том 3

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс