Журнал «Если», 1995 № 07
Шрифт:
— Это хорошо, сынок, значит, ты у меня растешь и умнеешь.
Алешка прищурил глаз и смотрел, как солнечный луч медленно сползал по стене. У него впереди была еще целая жизнь…
Наталия Сафронова
СЛОН ИЗ МУХИ ПОКА НЕ НУЖЕН
Вот уж в чем невозможно упрекнуть начинающих писателей, так это в мелкотемье. Автор, как вы сами убедились, способен дать ясные ответы практически на все смутные вопросы эволюции — от загадочной гибели динозавров до таинственного феномена НЛО. Единственное, что остается «за кадром»: каким образом Наставник осуществляет свои биотехнологические эксперименты на «кислородноуглеродных» объектах.
Впрочем, не дело фантастов углубляться в технические детали. На то существуют
В 50-е годы была разгадана тайна наследственности, определена структура ДНК (дезоксирибонуклеиновой кислоты), которая является носителем генетической информации. Две спирали ДНК первыми в мире «увидели» Уотсон и Крик, за что были удостоены Нобелевской премии. По принципу цепной реакции решение одной задачи выдвигало новые. Изучается химический состав ДНК, последовательность ее составляющих (нуклеотидов). Выяснена взаимосвязь гена и структуры, им кодируемой. Примерно через десять лет после открытия спиралей ДНК Ниренберг расшифровывает генетический код, оказывающийся универсальным для всех видов — от бактерий до высших организмов, то есть и человека. Тут же является желание потягаться с «создателем» и попробовать сотворить если не мир, то по крайней мере живую клетку. Как это происходит в природе, кажется ясным.
Первый искусственный ген создает Корана с сотрудниками (США), что в качестве научной сенсации держится недолго. Гены синтезируются один за другим в ряде лабораторий, причем уже с четким прикладным прицелом. Это первый, Корана, мог позволить себе искусство ради искусства: собрать ген, описать, рассказать, как «это делается». Продолжателей интересует ген уже как основа определенной программы — для создания, например, веществ белковой природы. К тому времени и клетка, и ген уже основательно «обжиты» исследователями. С помощью методик генной инженерии они умеют выделить из природного источника или сконструировать любой ген (взяв, например, в банке генов фрагменты любых ДНК разной протяженности). Этот ген может кодировать белок с любым набором аминокислот. С помощью соответствующих ферментов — режущих и склеивающих — в строение гена возможно внести поправки, скроив его даже из фрагментов ДНК различных генов, и получить, как говорят биотехнологи, рекомбинантную молекулу. Она будет нести в себе свойства разных микроорганизмов. Наконец, снабдив ген особыми регуляторными сигналами, заставить его работать в клетках бактерий или дрожжевых, получая таким образом нужный белок.
Пока фантасты искали темы, в лабораториях прошел мозговой штурм, позволивший оформиться еще одному важному направлению научно-технического прогресса — биотехнологическому. А участники мозгового штурма из многих областей физико-химической биологии составили целый клуб Нобелевских лауреатов.
Вокруг самого термина «биотехнология» до сих пор не окончены споры. Есть различные периодизации развития БТ. Например, такая, где годом рождения направления считается 1796-й, когда Дженнер впервые применил свою противооспенную вакцину. Логика такой классификации ведет дальше к Пастеру, его антитоксической сыворотке, вакцинации против холеры и бешенства. Затем следует открытие антител дифтерии Берингом и, наконец, этап, предшествующий манипуляциям вокруг гена, он связан с теорией Эрлиха (антиген — антитело), автор которой тоже стал в свое время Нобелевским лауреатом.
Отечественная школа биотехнологов склонна к более широкой трактовке термина. Под биотехнологией профессор В. А. Быков понимает (цитирую дословно): использование биопроцессов и биообъектов для целенаправленного воздействия на окружающую среду и человека, а также в интересах получения полезных для людей продуктов. Пожалуй, звучит скучновато и нуждается в расшифровке (что за процессы, что за объекты?), но по сути верно. Думаю, что с этим согласился бы и курирующий ряд программ по БТ в рамках ЮНЕСКО Альбер Сассон, который зарождение биотехнологии относит к… VI веку до н. э. Уже тогда, как свидетельствуют найденные при раскопках Древнего Вавилона письмена, люди умели варить пиво. А сбраживание с помощью микроорганизмов (точно так же, как виноделие или выпечка хлеба) есть процесс биотехнологический. Наши предки владели им в совершенстве: шумеры три века спустя после вавилонян, если верить историкам, знали не менее двух десятков сортов того же пива.
Пожалуй, едва ли не первой заявила свои права на продукцию биотехнологии медицина. И сегодня она продолжает настаивать на своем приоритете: до 65 процентов всех веществ, получаемых биотехническим путем, — медицинского назначения. Чтобы понять смысл этих процентов, приведем некоторые цифры. Продукция биотехнологии, производимая ежегодно, оценивается примерно в 50 миллиардов долларов. К 2000 году цифра возрастет до 85 — 100 миллиардов.
Почти одновременно в лабораториях США и Дании начались работы по созданию с помощью биотехнологии инсулина. Американские исследователи синтезировали ген человеческого инсулина для дальнейшего производства гормона а бактериальных клетках (кишечной палочки). Датские ученые шли несколько иным путем, разработав метод превращения инсулина свиньи в человеческий. Синтез гормона должен был происходить в генетически сконструированных штаммах дрожжей.
Сегодня фирмы этих стран— «Эли Лилли» (США) и «Ново индастри» (Дания) являются основными производителями инсулина в мире. Биотехнология позволила выпускать препарат в невиданных ранее масштабах и сделать его в самом деле «человеческим», не вызывающим разных неприятных последствий при применении, особенно длительном, как это случалось при использовании животного инсулина. К тому же производство не зависит от поставок сырья с боен и его качества.
В специально сконструированных клетках бактерий был синтезирован и гормон роста человека (соматотропин), недостаток которого в организме приводит к гипофизарной карликовости. Частота этой патологии достаточно велика — один случай на 5000 человек среди детей западных стран. Биотехнология дает выход препарата в больших количествах. Применяемые при этом методы генной инженерии позволяют достичь высокой степени биохимической очистки гормона.
Большие надежды связывали медики с интерфероном, белком, который выделяется клетками животных и человека при попадании в организм вирусов. Это своего рода первая оборона против вирусной атаки. Интерферон оказывает усиливающее действие на иммунитет и подавляет размножение аномальных клеток, с чем связывают противоопухолевое действие препарата. Он также был получен генно-инженерным путем учеными Швеции, США, Франции, Израиля. Другое дело, что полностью надежды на чудодейственность интерферона не оправдались.
Особый интерес вызывала генотехника у создателей вакцин. Их не устраивала чистота применяемых классических бактериальных и вирусных вакцин, дающих нередко вредные побочные эффекты. Одновременно разрабатывались вакцины против гепатита, бешенства, сифилиса, полиомиелита и ряда болезней, поражающих не только человека, но и домашних животных.
Своеобразный подход к «получению полезных людям продуктов» демонстрируют отечественные специалисты, применяя биотехнологические методы для получения лекарственных препаратов из растительного и природного сырья. По мнению генерального директора НПО «ВИЛАР» В. А. Быкова, биологически активные соединения, которые можно использовать в медицине, содержатся в той или иной форме и в разных количествах во всех растениях. Вообще растительный мир Земли — огромная биомасса (5 х 10 12тонн), которая дается в руки человеку без каких-либо усилий с его стороны и затрат. На фотосинтез работает только солнце.
Сейчас учеными Центра биологических структур создана система биохимических тестов для поиска растений с определенной фармакологической активностью. Система может стать универсальной, а пока скрининг, так сказать, тематичен: психотропное, кардиологическое, противовоспалительное, антимикробное действие. Подготовив достаточное количество биомассы, получив культуры клеток, можно с помощью биотехнологии регулировать продуктивность растений, проводить целенаправленный биосинтез нужных человеку соединений. Оказывается, используя культуру клеток части растения— корневища, соцветий, листьев и т. д. — особенно богатой биологически активными веществами, можно как бы наращивать только эту, интересующую нас часть.