Журнал «Компьютерра» № 16 от 25 апреля 2006 года
Шрифт:
Voice Speed Dial.
Программное приспособление для быстрого набора номера того или иного абонента или вызова приложения по голосовой команде. Продукт нуждается в предварительных обучающих занятиях, ручной и голосовой настройках.
Архиватор, и неплохой, но со странностями. Допустим, принятый с компьютера сжатый файл он распакует, самостоятельная компрессия для него тоже не проблема. Тем не менее плоды его трудов оказываются испорченными: уплотненные им файлы только он сам и может извлечь из архива.
SIM Manager.
Естественно, служит для работы с SIM-картой.
Кроме перечисленных программ, в памяти устройства содержатся и, так сказать, сливаются с фоном редактор MMS и оболочка для приложения «Телефон», предлагающая по мере набора
В комплект поставки входят: коммуникатор, поясной чехол, стереогарнитура, адаптер питания, кабель для подсоединения к ПК, диски с русификатором, ПО и инструкция.
Несмотря на критические ремарки, смартфон был мною воспринят благосклонно. Да, процессор и камера у него такие, что возникает подозрение, будто машина есть следствие удачной тренировки конструкторов. Они не знали, получится у них или нет, поэтому взяли дешевые комплектующие. Когда же получилось, начальство наложило резолюцию пустить телефон на конвейер. Инженеры же перешли к следующей стадии: проектированию потомка – коммуникатора HTC Hermes. У него более выигрышная наружность, 2-Мп фотомодуль и процессор Samsung S3C2442, что, как вы увидите из обзора HP iPAQ rx1950 (в следующем номере), есть великое достоинство.
Разумеется, история рождения на свет HTC Wizard отличается от изложенной, хотя выбор такого процессора я склонен объяснять именно нежеланием разработчиков рисковать. Заодно, может, решили, что серию раздвижных терминалов будет открывать сравнительно недорогая модель: в случае неудачных продаж потери бы были меньше. Пока вынужден констатировать, что доступного устройства не получилось, все же трубка за 620 долларов в эту категорию не попадает. Снижения стоимости следует ждать не раньше, чем на рынок выйдут и проведут там определенное время новые смартфоны SonyEricsson, Nokia E-series, а также представители отряда HTC Hermes. В общем, не так уж и долго осталось.
Софтерра: Компьютеры, математика и свобода
Автор: Вадим Житников
В давние, давние времена компьютеры занимались только своими прямыми обязанностями: они считали. Складывали и вычитали, решали системы уравнений, интегрировали и дифференцировали. Рассчитывали траектории баллистических ракет и аэродинамические характеристики самолетов, предсказывали погоду и моделировали атомные реакторы. С тех пор отношение к технике, которая когда-то называлась вычислительной, сильно изменилось – и сейчас во многих домашних и офисных компьютерах самой сложной «математической» программой является стандартный «Калькулятор». Неужели математика сдала свои позиции в эпоху персональных компьютеров?
Разумеется, это не так. Просто компьютеры в полной мере демонстрируют свое главное свойство: быть универсальным устройством – каждый получает от них то, что ему нужно. Так что если вы являетесь студентом, инженером или научным сотрудником и вам требуется решать на ПК именно математические задачи, то современные компьютеры открывают перед вами самые широкие возможности.
Существует множество программ, предназначенных для узкоспециализированных математических расчетов. Больше всего известны и широко распространены универсальные пакеты-комбайны, пригодные для занятий самой разной математической деятельностью. По функциональности они делятся в целом на две категории: пакеты, предназначенные в основном для численных расчетов (например, MatLab) и системы компьютерной алгебры (Computer Algebra System), к которым относятся Mathematica, Maple и (отчасти) MathCAD – они также называются системами символьных или аналитических вычислений (Symbolic Manipulation Program). Это наиболее универсальные математические программы, способные решать самые разные задачи, причем как численно, так и точно – аналитически.
Возможностей у подобного софта – множество, и есть только одна проблема: все эти программы довольно дороги. А как же свободное программное обеспечение, спросите вы? Оказывается, и здесь дело обстоит неплохо. Существуют альтернативы как для MatLab (системы Octave и Scilab), так и свободные системы аналитических вычислений – Maxima и Axiom. О последних и поведем речь.
Но
Впрочем, не всякая задача имеет точное решение, и поэтому численные вычисления тоже не забыты, причем с рядом очень приятных особенностей. Так, величина целых чисел неограничена, а вычисления с плавающей точкой могут выполняться с любой заранее заданной точностью. Хотите увидеть факториал 1000 – пожалуйста! А ведь это число с 2568 цифрами. Хотите число с сотней знаков после запятой – никаких проблем! Главное, чтобы хватило вычислительных ресурсов компьютера[Распечатка числа p со ста знаками после запятой хранится у меня дома как реликвия из далекого 1981 года. Вычислялось оно на отечественной ЦВМ «Мир-1», умевшей работать с произвольно задаваемой точностью чисел, с помощью встроенной функции arcos(-1). Процесс расчета занимал около пятидесяти минут, а ресурсов там было – 600-килогерцовое АЛУ, 4 Кбайт оперативной памяти на магнитных сердечниках и никаких внешних накопителей, кроме считывателя перфоленты. – С.Л.]. Ну и наконец, построение красивых графиков – неотъемлемая часть любой системы аналитических вычислений. Математика – наука абстрактная, а человеческое мышление образно. Хорошо известно – подавляющая часть информации поступает к человеку через зрение, поэтому без визуализации математических данных не обойтись.
Помимо основных математических возможностей, каждая система аналитических вычислений имеет встроенный язык программирования. С помощью этого языка возможности системы можно расширять, и каждая САВ имеет большую библиотеку пакетов для решения специальных математических задач.
Посмотрим, как работает САВ не практике. На рис. 1 и 2 показано, как Maxima справляется с тремя задачками из курса школьной алгебры: упрощение тригонометрического выражения, решение системы линейных уравнений и построение графика функции y=x/[(x–1)(x^2–2)]. Трехмерные графики выглядят еще интереснее. Axiom обладает своей собственной графической подсистемой, способной создавать двух– и трехмерные графики очень высокого качества. На рис. 3 изображена поверхность, известная как тригонометрический винт и построенная с помощью Axiom. А Maxima для построения графиков использует внешнюю программу gnuplot. Результат работы такой «связки» можно видеть на рис. 4. Давайте устроим маленькую математическую викторину – что за функция изображена на этом рисунке? Ответ найдете в конце статьи.
Как видите, все довольно просто. Правда, и задачи тоже простые – они выбраны такими для иллюстрации. Но главная сила САВ в том, что они способны решать чрезвычайно громоздкие задачи. Например, Axiom может взять любой интеграл, если только он «берется» в элементарных функциях. Более того: в отличие от численных расчетов, являющихся по своей природе приближенными и потому не имеющих «доказательной силы» с точки зрения чистой математики, аналитические результаты, полученные с помощью САВ, вполне можно использовать для строгих математических доказательств. Но даже если вы не профессионал в математике и подобные возможности вам ни к чему, все равно использование САВ в виде интеллектуального калькулятора может быть весьма полезным.