Журнал "Компьютерра" №691
Шрифт:
Новый проект назвали SCORE (Stove for Cooking, Refrigeration and Electricity) - печь для готовки, охлаждения и получения электричества. Самое интересное, что комбайн основан на технологии термоакустических преобразователей, которые до сих пор использовались лишь в космосе или в военных целях для охлаждения электроники или генерации электроэнергии. Только эти передовые технологии, надеются авторы проекта, позволят создать простое устройство почти без движущихся частей и не требующее обслуживания, цена которого ($30–40) будет на порядок меньше, чем у электрогенераторов такой же мощности.
По-видимому, первыми с термоакустикой столкнулись стеклодувы, еще в XIX веке. Они иногда слышали чистый звук, издаваемый неравномерно
Механизм работы термоакустического устройства легче всего понять на примере теплового насоса. В простейшем случае он состоит из настроенной в резонанс со звуковыми колебаниями трубы, в которую помещен кусок пористой керамики или пучок параллельных заполненных газом тонких трубок. С одной стороны трубы помещают динамик, похожий на тот, что используют в звуковых колонках. В возбуждаемых динамиком стоячих звуковых волнах газ колеблется взад и вперед, нагреваясь при сжатии и охлаждаясь при расширении. Этот перепад температур мал - всего две сотые градуса даже для громкого звука на болевом пороге нашего слуха (120 децибел). Но если правильно подобрать материал и размеры трубок, этого оказывается достаточно, чтобы обменивающийся с ними теплом газ создал в пучке необходимый градиент температуры.
Точно так же, но в противоположном направлении работает и термоакустический генератор, в котором звуковые колебания возникают при поддержании перепада температур в пучке трубок. А уже эти звуковые колебания нетрудно превратить в электрический ток с помощью того же динамика, который будет работать как микрофон, то есть линейный электрогенератор. Если же в качестве динамика использовать пьезопластину, в таком устройстве совсем не будет движущихся частей. Первые термоакустические холодильники и генераторы были примерно вдвое менее эффективны, чем обычные компрессорные холодильники и двигатели внутреннего сгорания. Однако постоянное совершенствование их конструкции позволило ликвидировать отставание, а в некоторых случаях даже добиться эффективности около 40%.
В "кухонном комбайне" для развивающихся стран будет два пучка трубок и один динамик между ними в общей трубе-резонаторе, которая конструктивно соединена с плитой. Горящие дрова одновременно с кастрюлями и сковородами будут нагревать один из концов первого пучка - в нем возникнут звуковые колебания с частотой, по предварительным расчетам, около пятидесяти герц. Эти звуковые колебания будут раскачивать генерирующий электричество динамик и создавать перепад температур во втором пучке, работающем как холодильник. Конструкция гениально проста, и будем надеяться, что она действительно окажется эффективной.
Такой генератор, наверное, придется весьма кстати, если понадобится подзарядить "стодолларовый ноутбук" ребенка. Однако не очень понятно, станет ли хорошая хозяйка в жаркой Африке день и ночь что-то жечь, чтобы работал ее холодильник. Впрочем, до конца этого проекта еще пять лет, а первые рабочие прототипы обещаны лишь через три года, так что за это время многое может измениться, включая и саму концепцию устройства. ГА
Новую технологию беспроводной передачи энергии продемонстрировали физики из Массачусетского технологического института (МТИ). Две магнитные антенны диаметром 60 см, настроенные на одну резонансную частоту, обеспечили энергией лампочку мощностью 60 Вт.
Как дистанционно зарядить беспроводное устройство вроде ноутбука, сотового телефона или домашнего робота? Для передачи энергии можно использовать электромагнитные волны, но они будут уносить львиную часть энергии в окружающее пространство… Работающие на высоких частотах узконаправленные антенны или лазеры опасны. Не дай бог, что-то окажется на пути концентрированного пучка электромагнитного поля. А связанные, как в обычном трансформаторе, магнитные катушки эффективно работают только в непосредственной близости друг от друга.
Год назад научная группа из МТИ предложила использовать так называемые нераспространяющиеся (evanescent) электромагнитные волны. Они быстро затухают вблизи излучателя и не уносят энергии в пространство, но их энергию можно использовать, если на расстоянии меньше длины волны от источника поместить настроенный в резонанс приемник.
И вот теперь эта идея была впервые реализована. Две резонансные катушки, настроенные на частоту десять мегагерц, что соответствует длине волны тридцать метров, были размещены в двух метрах друг от друга. К одной был присоединен передатчик, а к другой приемник и лампочка. Вокруг излучающей катушки возбуждается в основном магнитное поле, которое в отличие от электрического слабо взаимодействует с большинством тел, если в них нет ничего настроенного с этим полем в резонанс. Поэтому такая антенна практически безопасна, а любое электронное устройство, помещенное между антеннами, не помешает передаче энергии и будет нормально работать. Настроенные в резонанс антенны оказываются сильно магнитно связаны, и энергия передается приемнику с эффективностью около сорока процентов. Остальные шестьдесят процентов поглощаются излучателем.
Результаты демонстрационных экспериментов хорошо совпали с предсказаниями теории. Но полуметровая антенна великовата для использования в быту, и в ближайшее время ученые обещают продемонстрировать передачу энергии на более компактные приемные антенны. Кроме того, шестьдесят процентов потерь при передаче - чересчур большая плата за беспроводное удобство. И хотя пока трудно сказать, найдет ли эта технология практическое применение, начало исследований получилось многообещающим. ГА
Американские физики экспериментально доказали, что эффект Казимира проявляется не только в вакууме, но и в жидкостях. Эту работу выполнили Джереми Мандэй и Федерико Капассо (Jeremy Munday, Federico Capasso), работающие в Гарвардском университете.
Эффект, о котором идет речь, в 1948 году предсказал голландский физик-теоретик Гендрик Казимир. Он показал, что между двумя идеально отражающими параллельными зеркалами, помещенными в глубокий вакуум, возникает сила притяжения чисто квантовой природы. Согласно гейзенберговскому соотношению неопределенностей, в вакууме постоянно рождаются и исчезают виртуальные фотоны электромагнитного излучения. Спектр энергий тех квантов, которые могут появиться между зеркалами, чуть уже энергетического спектра свободного пространства, поскольку некоторые состояния этих квантов в межзеркальной щели запрещены. Энергия виртуальных фотонов вносит вклад в суммарную энергию физического вакуума, которая считается нулевой. Поскольку в пространстве между пластинами этих фотонов меньше, нежели вовне, плотность вакуумной энергии там отрицательная. По этой причине в вакууме возникнет негативное давление, направленное перпендикулярно зеркалам, которые в результате начнут притягиваться друг к другу.