Журнал "Компьютерра" N731
Шрифт:
Вот, собственно, и вся сказка про ЗЫЗу, потому что говорить больше решительно не о чем. Все игры отлично запускаются и работают - особенно после того, как я подразогнал процессор, иначе распаковка образов в ужатом формате CSO излишне озадачивала систему. Видео на раз пережимается в родной для PSP формат при помощи XviD4PSP и на экране консоли выглядит превосходно. Мегахит God of War поначалу не понравился, но через час я его "раскушал", и теперь, дописывая эти строки, с нетерпением жду возможности вернуться к игре. А то, что меня не зацепила моднейшая Patapon, так то, думаю, нестыковка на уровне хромосомного набора. Говорят, самые яростные ее ценители - поклонники айфонов, к которым я, увы, не отношусь.
Все
Автор: Юрий Ревич
Одной из главных особенностей почти всех придуманных человеком электронных устройств для визуального отображения информации (чаще называемых дисплеями) является то, что они излучают свет. В природе сами по себе светятся только звезды (в том числе и Солнце) и огонь, все остальное цветовое многообразие мира обусловлено отраженным светом[Если, конечно, не считать молний, жуков-светляков и фосфоресцирующих гнилушек.]. Может быть, поэтому устройства на основе электронной бумаги, по всеобщему признанию, гораздо более комфортны для восприятия текста, чем светящиеся экраны КПК или ноутбуков?
Так или иначе, но почти вся история дисплеев, начиная с электронно-лучевой трубки, есть история попыток приспособить источники света для отображения информации. Все представленные сегодня на рынке (и даже еще не представленные) технологии производства дисплеев, кроме разве что упомянутой электронной бумаги, предполагают, что элементы экрана сами излучают свет. За одним огромным исключением, коим являются доминирующие ныне ЖК-технологии.
Вообще-то словосочетание "жидкий кристалл" звучит примерно, как "твердая вода" или "горячий снег". Во второй половине XIX века, когда бурно развивалась наука кристаллография, любой физик не задумываясь заявил бы вам, что такого просто не может быть. В жидкости, по определению, молекулы движутся хаотично, тогда как в кристалле они жестко связаны, образуя стройную упорядоченную структуру. Тем не менее еще в 1888 году (раньше, чем появилась электронно-лучевая трубка!) австрийский ботаник Фридрих Райницер обнаружил необычное вещество - холестерилбензоат, - которое могло существовать в трех фазах: твердой, жидкой и промежуточной. Эта промежуточная фаза, будучи по всем признакам жидкостью, обладает также свойствами кристалла, то есть имеет разные характеристики по разным направлениям. В том числе характеристики оптические - например, жидкий кристалл по-разному в разных направлениях пропускает свет, поворачивая его плоскость поляризации. Причем оттого, что кристалл жидкий, а не твердый, поворотом можно управлять, если поместить слой такой жидкости в электрическое поле, которое будет выстраивать молекулы в нужном порядке.
Однако это еще не все. Если пропустить через слой жидких кристаллов естественный свет (неважно, от природного источника или созданного руками человека), то ничего не изменится. Существенной частью любой ЖК-ячейки служит поляризатор - пленка, которая может из естественного света, в котором плоскости колебаний отдельных световых волн ориентированы случайным образом, отфильтровать волны, колеблющиеся только в определенном направлении.
Объединив эти особенности поляризационных фильтров и свойство жидких кристаллов управляемо поворачивать плоскость поляризации проходящего света, мы получим ячейку, прозрачность которой можно изменять с помощью электрического сигнала.
В середине 1960-х инженеры из RCA (Radio Corporation of America) Д. Фергюсон и Р. Вильямс, исследовавшие воздействие электрического поля на жидкие кристаллы так называемого нематического типа, продемонстрировали первые ЖК-индикаторы,
Первые ЖК-индикаторы и матрицы были пассивными. Устройство ячейки такой простейшей матрицы или индикатора показано на рис. 1. Здесь слой жидких кристаллов толщиной несколько микрон находится между двумя стеклянными электродами, причем молекулы ориентированы параллельно плоскости электродов. Сверху и снизу такого "сэндвича" расположены пластины-поляризаторы, ориентированные перпендикулярно друг другу. Толщина слоя жидких кристаллов рассчитана так, что в исходном состоянии он поворачивает плоскость поляризации световой волны ровно на 90 . В результате в обесточенной ячейке (на рис. 1 слева) свет беспрепятственно проходит через весь "пирог", отражается от зеркала (оно сделано матовым, чтобы не отражало окружающих предметов) и возвращается обратно. Подобная матрица в обесточенном состоянии выглядит, как обычная стеклянная пластинка.
Когда на электроды подается напряжение (на рис. 1 справа), электрическое поле ориентирует молекулы жидкого кристалла вдоль силовых линий, то есть перпендикулярно плоскости электродов. Жидкий кристалл теряет свои свойства и перестает поворачивать плоскость поляризации света. За счет перпендикулярной ориентации поляризационных пластин весь "пирог" перестает пропускать свет. Образуется черная точка (или сегмент цифрового индикатора - в зависимости от конфигурации электродов).
Энергия в такой ячейке расходуется только на перезаряд конденсатора, образованного электродами. Управлять сегментами, кстати, приходится с помощью переменного тока, потому что однажды "засвеченный" сегмент может оставаться в таком состоянии часами даже после снятия напряжения с электродов и возвращать в исходное состояние его приходится принудительно, подачей напряжения противоположной полярности.
Такие ЖК-дисплеи широко используют и поныне - вы их не раз встречали в тех же часах, дисплеях калькуляторов, плейеров, магнитол, фотокамер, в портативных измерительных приборах. Огромное преимущество сегментных ЖК-дисплеев почти перед любыми другими разновидностями устройств отображения информации заключается в том, что они практически не потребляют энергии, расходуяя ее лишь на изменение состояния кристалла. Зато обеспечить полутоновые изображения в таких пассивных матрицах напрашивающимся методом изменения величины подаваемого на электроды напряжения крайне сложно. Кроме того, простая пассивная матрица имеет неплохую контрастность в отраженном свете, но при наличии лампы-подсветки, увы, черного цвета в ней не добиться.
По этим причинам в компьютерных дисплеях простые пассивные матрицы практически не использовали. Сначала придумали ячейки, использующие технологию STN (Super TN[TN означает Twisted Nematic - от наименования типа жидких кристаллов ("закрученные нематические").]), с помощью которой удалось увеличить угол "закручивания" поляризованного света внутри ЖК-ячейки с 90° до 270°, что позволило обеспечить лучшую контрастность изображения и более плавное управление полутонами. Дальнейшим усовершенствованием стала технология DSTN, где попросту взгромоздили друг на друга две STN-ячейки, молекулы которых при работе поворачиваются в противоположные стороны. Это позволило довести контрастность в проходящем свете до такой величины, что появилась возможность изготовить цветной дисплей, в котором на каждый пиксел приходится три ЖК-ячейки (субпиксела), каждая со своим цветным фильтром.