Журнал «Вокруг Света» №11 за 2007 год
Шрифт:
А раз во всех существах встречаются одинаковые «кирпичики», значит, они достались им от некоего общего предка? Кто же это мог быть? В мире одноклеточных мы видим организмы, похожие по обмену веществ и на растения, и на животных. Первые путем фотосинтеза создают себе пищу сами, вторые — этого не могут и нуждаются в готовых органических веществах. Например, от такого существа, как эвглена зеленая — полуводоросль-полуживотное, могла пойти дальнейшая эволюция. Чтобы стать многоклеточными, отдельным существам-клеткам нужно было объединиться в колонии. Сейчас полагают, что такой скачок связан с появлением хищничества как образа жизни: большую особь труднее съесть. Вся дальнейшая эволюция — это непрекращающаяся гонка наращивания размеров обеих противоборствующих сторон, в которой хищники и жертвы подгоняли друг друга. Животные, которые жили миллиард лет назад, настолько отличались от современных, что к ним неприменимы привычные принципы классификации. В них причудливо сочетались признаки разных современных типов, никогда не встречающиеся одновременно ни в одном из ныне живущих организмов. Трибрахидиум можно было бы назвать медузой, если бы не диковинная трехлучевая симметрия, более характерная для растений. Дикинсония похожа на кольчатого червя,
Уязвимое место
На самом деле прямого обоснования эволюционной теории еще никто не представил. В качестве такового может послужить только наблюдение за естественным развитием видов и обязательная регистрация того, какими были существа на старте, их промежуточные формы и во что превратились в конце. Отсутствие такого наблюдения и есть наиболее уязвимое место теории. Действительно, если видообразование — это непрерывный процесс, который продолжается и в наши дни, то почему мы не встречаем переходных форм? Есть, к примеру, тигр, лев, леопард, рысь — представители семейства кошачьих , а полосатых львов или тигров с гривами — форм промежуточных между двумя родственными видами — не бывает. Настораживает и то, что в ископаемом состоянии переходные формы также не встречаются. Отсутствие современных переходных форм Дарвин объяснял тем, что картина сегодняшнего мира — это результат уже разрешившихся противоречий и родоначальные виды истреблены естественным отбором. Что же до отсутствия их ископаемых остатков, то аргументом служили кратковременность их существования и небольшая численность, из-за чего вероятность, чтобы они сохранились, очень мала, а вероятность обнаружить их — и вовсе мизерна. Все, что видят палеонтологи, — это один вид в одном слое, другой — в другом, и никаких переходов. Словно долгие периоды устойчивого существования одних и тех же организмов вдруг сменялись быстрым видообразованием. Американские ученые Нильс Элдридж и Стивен Гоулд назвали это явление «прерывистым равновесием». Осталось понять условия стабильности и факторы ускорения эволюции.
И все-таки, в одном частном случае — среди микроорганизмов — ученые считают, что им удается видеть и регистрировать ход эволюции. В ответ на изобретение новых антибиотиков против болезнетворных бактерий возникают штаммы (группы микроорганизмов с четкими физиологическими особенностями), устойчивые к действию этих лекарств. С первой половины XX века идет постоянная гонка: медикам приходится все время изобретать новые лекарственные средства, которые быстро теряют эффективность из-за ускоренной эволюции микробов. Единственное, что останавливает от того, чтобы считать ее зримым процессом видообразования, — невозможность применить к бактериальному штамму понятия «вид». Стандартное определение гласит, что вид — это совокупность организмов, неспособных к скрещиванию с особями других видов или дающих при таких скрещиваниях бесплодное потомство. Но оказалось, что штаммы, относящиеся к одному и даже разным видам бактерий, могут обмениваться генетическим материалом друг с другом. Это явление назвали горизонтальным переносом генов. Благодаря миграции генов достижения одного вида микроорганизмов становятся доступными для другого — такую форму эволюции назвали ретикулярной, или сетчатой, чтобы подчеркнуть ее отличие от «классической», то есть древовидной, куда бактерии, похоже, не вписываются. Образно говоря, для бактерий нельзя построить эволюционное древо с общим корнем — у них родственные связи образуют запутанную сеть.
Парадоксы развития
Еще один феномен, который пока трудно объяснить с эволюционной точки зрения, — это сложность строения живого организма. Как, например, мог образоваться такой совершенный орган, как глаз? Дарвин, который хорошо знал зоологию и анатомию, на этот вопрос отвечал так. Органы, способные воспринимать свет, есть даже у самых простейших существ. Поэтому глаза можно выстроить в ряд по мере усложнения: от простых пигментных пятен или выстланных пигментом прозрачных кожных мешочков ланцетника до сложных фасеточных глаз насекомых и совершенной оптической системы человеческого глаза. Причем такой ряд легко создать и на основе глаз зародышей, что будет иллюстрацией к процессу их развития. Ну а какие преимущества в конкурентной межвидовой борьбе дают хорошо работающие глаза тем, у кого они есть, вряд ли нужно перечислять. Гораздо труднее оказалось для Дарвина объяснить происхождение электрических органов у рыб. Но если бы ему было известно, что почти все физиологические процессы имеют электрическую природу, он с легкостью это сделал бы.
Тем не менее проблема осталась — на молекулярном уровне. Даже у наиболее простых бактерий есть около 200 генов, каждый из которых состоит из сотен или тысяч нуклеотидов. Каждый ген отвечает за какую-то жизненно необходимую функцию, например за построение элементов клетки, производство и починку молекул ДНК, за транспорт пищи в клетку. Американский биохимик Майкл Бихи назвал это свойство живой системы «неуменьшаемой сложностью», из которого следует, что первая клетка должна была появиться сразу с двумя сотнями генов, чтобы стать жизнеспособной. Кстати, этот пример часто используют критики теории эволюции. Они говорят: раз биологи сами пришли к такому парадоксу, значит, они отрицают дарвинизм. В логике такой прием называется подменой тезиса и свидетельствует об ошибочном выводе — разумеется, ученые не отрицают дарвинизма, они ищут пути обхода «неуменьшаемой сложности». Действительно, случайное возникновение даже самой элементарной клетки путем перебора химических соединений маловероятно. Но мы мало знаем о том, как была организована ранняя жизнь на Земле и какие пути могли привести к возникновению клетки.
Проблему представляет собой и сложность многоклеточных организмов с десятками тысяч генов. Ведь материала, с которым «работает» естественный отбор, может не хватить. Особенно среди крупных животных, исчисляемых всего лишь тысячами особей, таких как киты или слоны. В 1957 году английский генетик Джон Холдейн рассчитал, что для замены в популяции каких-либо организмов только одного признака необходимо вести отбор в 300 поколениях — а признаков-то (генов) десятки тысяч! Возможно ли при такой маленькой скорости эволюции возникновение новых видов, различающихся не по одному, а по целому комплексу признаков? Позднее это затруднение назвали «дилеммой Холдейна». Кажущуюся невозможность удается преодолеть, если сменить математическую модель и отказаться от посылки, что признаки эволюционируют независимо друг от друга. Половой процесс и связанный с ним обмен генами может объединять в одной особи множество нежелательных признаков и позволяет выбраковывать их существенно быстрее, чем предполагалось в модели Холдейна.
С помощью генетики удалось решить и вопрос о направленном течении эволюции, который стоял в свое время довольно остро. Еще в XIX веке палеонтолог Эдуард Коуп обнаружил, что у разных видов ископаемых животных могли развиваться одинаковые признаки. Это указывало на то, что эволюция — процесс не случайный, но подчиняющийся каким-то внутренним, еще не открытым закономерностям. В XX веке схожую концепцию под названием «номогенез» развивал русский ученый Лев Берг. Но экспериментальные данные такой концепции противоречат. У животных, даже не близких родственно, есть много общих генов, они-то и определяют, казалось бы, независимое появление у разных видов сходных признаков. Поскольку гены похожи, то и изменяются (мутируют) они сходным образом. С этой точки зрения удалось объяснить «закон гомологических рядов в наследственной изменчивости», сформулированный в 1920 году Николаем Вавиловым, который обнаружил, что у разных видов злаков встречаются похожие формы. Например, у ржи и пшеницы колосья могут быть как с остью, так и без нее; междоузлия могут быть как окрашенными, так и нет. Этот закон обладает большой предсказательной силой: если у одного растения какого-то признака нет, но он есть у близкого ему вида — нужно искать, вполне вероятно, что его просто еще не обнаружили.
В статье, опубликованной в 2007 году в журнале Science, американские ученые констатировали, что шимпанзе — более «продвинутый» в генетическом отношении вид, нежели человек
Кто мы?
Генетика генетикой, но давайте посмотрим правде в глаза. Во всей этой истории большинство людей по-настоящему волнует лишь один вопрос — происхождение человека. Прав ли был Дарвин относительно близкого родства людей с человекообразными обезьянами? Судите сами. Анатомическое строение, физиологические и биохимические особенности, в частности строение молекулы гемоглобина, роднят нас с человекообразными обезьянами настолько, что сомневаться трудно. Ближе всех к человеку стоит шимпанзе, наше генетическое сходство настолько велико — 98%, что возникла идея в один род объединить человека и два известных вида шимпанзе: обыкновенного (Pan troglodytes) и карликового (Pan paniscus), также известного под названием бонобо. В 1991 году американский биолог Джаред Даймонд написал книгу об эволюции человека, которую так и назвал: «Третий шимпанзе». По его мнению, в зоологической систематике рода Homo правильнее использовать три вида: Homo troglodytes (человек пещерный, или шимпанзе обыкновенный), Homo paniscus (человек фавновый, или шимпанзе карликовый) и Homo sapiens.
По данным молекулярной филогенетики, эволюционные линии человека и шимпанзе разошлись примерно 6—7 миллионов лет назад. Мало того, сопоставив 14 000 генов человека и шимпанзе, ученые из Мичиганского университета под руководством Цзяньчжи Чжана пришли к выводу, что у шимпанзе эволюция на молекулярном уровне шла быстрее. То есть для того чтобы из предка, общего для шимпанзе и человека, получились сегодняшние виды, больше генов потребовалось изменить у шимпанзе. Так, может быть, вершина эволюции — это шимпанзе, а не человек? Тем более что с точки зрения биологии способность к рассудочной деятельности, выраженная у человека в большей мере, чем у других видов животных, не такое уж принципиальное отличие, и оно требует меньшего количества генетических перестроек, чем геном в целом.
Фальшивки и ошибки
За полтора столетия эволюционной теории в ней бывали ошибочные опыты и заключения, а подчас и фальсификации, и это — повод для вполне справедливой критики. Например, знаменитая история с «пилтдаунским человеком», обнаруженным в 1912 году. Его скелет был сфабрикован какими-то шутниками из черепа человека и челюсти орангутана и долгое время рассматривался как промежуточное эволюционное звено к современному человеку. Фальшивку разоблачили в 1953 году. Другой повод подал известный в прошлом популяризатор дарвинизма Эрнст Геккель: в стремлении убедительнее проиллюстрировать эволюционную теорию он переделывал рисунки зародышей животных так, чтобы на ранних стадиях они больше напоминали рыб — того требовал сформулированный им «биогенетический закон» (в развитии особи повторяются основные этапы эволюции вида). Оппоненты, приводя подобные случаи, делают вывод, что при доказательствах эволюционной теории были использованы несуществующие факты, а значит, она ошибочна. В каких-то единичных случаях да, были использованы. Но во-первых, все такие подделки, в том числе пилтдаунский человек и геккелевские рисунки, позже разоблачили, причем сами биологи. Во-вторых, твердо установленных фактов, не противоречащих теории, — гораздо больше. Встречается часто и такой аргумент, который касается, скорее, методологии науки, чем ее содержания, — раз у эволюционной теории есть нерешенные проблемы, значит, она несостоятельна. На это можно сказать следующее: у естественнонаучной теории должны быть нерешенные проблемы и области изучения, которые она только нащупывает. Это следует, в частности, из особенностей эмпирических обобщений: нет логических законов перехода от частного к общему.