Журнал "Вокруг Света" №12 за 2001 год
Шрифт:
Уже, исходя из теории тяготения Ньютона, можно предсказать возможность появления такого объекта, как черная дыра. В 1916 году Эйнштейн предложил принципиально новую теорию тяготения, названную Общей теорией относительности. Один из главных выводов этой теории — тесная связь между временем, пространством и распределением массы. Согласно Эйнштейну, пространство и время — это формы существования материи.
Исчезнет материя — исчезнут пространство и время. Масса изменяет геометрию пространства своей гравитацией. Геометрия пространства, ее изменение со временем, а также скорость течения самого времени зависят от распределения и движения материи в пространстве, которые в свою очередь зависят от его геометрии. Таким образом, геометрия пространства указывает материи, какие свойства она должна иметь, а материя указывает
Любые массы искривляют пространство-время тем сильнее, чем больше эти массы. Когда большая масса вещества оказывается в сравнительно небольшом объеме, то под действием собственного тяготения это вещество будет неудержимо сжиматься и наступит катастрофа — гравитационный коллапс. В процессе коллапса растут концентрация массы и кривизна пространства-времени, и, наконец, в результате сжатия наступает момент, когда пространство-время свернется так, что ни один физический сигнал не сможет выйти из коллапсирующего объекта наружу и для внешнего наблюдателя объект перестанет существовать. Такой объект и называется черной дырой. Немало усилий было затрачено теоретиками, чтобы разобраться в особенностях геометрии пространства-времени, связанного с черными дырами.
Согласно современной теории эволюции звезд, «умирая», каждая звезда становится или белым карликом, или нейтронной звездой, или черной дырой. Белые карлики известны уже много десятилетий и долгое время считались последней стадией любой звезды, но затем были открыты пульсары, и астрономы признали реальное существование нейтронных звезд. Теперь же ученые задумались о возможности реального существования самого удивительного класса умирающих звезд — черных дыр. К середине 60-х годов астрофизикам удалось рассчитать подробно структуру звезд и ход их эволюции, и они поняли, что существование устойчивых «мертвых» звезд, масса которых больше трех солнечных, невозможно. А так как во Вселенной достаточно много звезд с очень большими массами, астрофизики стали всерьез обсуждать возможность существования черных дыр, рассеянных повсюду во Вселенной. Массивные звезды стареют очень быстро. В процессе всей своей жизни они теряют массу, то есть выбрасывают вещество в пространство. Как правило, эволюция таких звезд заканчивается мощным взрывом — «вспышкой Сверхновой», в результате которой огромные облака звездного вещества выбрасываются в межзвездную среду. «Остаток» звезды сжимается под действием силы тяготения и может стать нейтронной звездой, то есть звездой, состоящей из вырожденного нейтронного газа. Именно внутреннее давление вырожденного газа противодействует силе гравитации и останавливает сжатие звезды. Однако если масса сжимающейся звезды превышает солнечную массу в 3 и более раз, никакая сила не может остановить процесс сжатия.
По мере сжатия напряженность гравитационного поля вокруг звезды все более нарастает. Теория Ньютона уже не может правильно описывать происходящие явления, и приходится обращаться к теории относительности Эйнштейна. В ходе нарастающего сжатия нарастает и искривление пространства-времени. Наконец, когда звезда сожмется до радиуса в несколько километров, пространство-время «свернется» и звезда исчезнет из видимой Вселенной, от нее останется только гравитационное поле — следовательно, произойдет рождение черной дыры.
Задача поиска и открытия черных дыр в космосе представляется на первый взгляд совершенно безнадежной, так как никакая информация, даже свет, не может вырваться с поверхности подобных объектов. Основной инструмент астрономов — телескоп бессилен в решении этой задачи. Но во Вселенной продолжает «жить» и действовать гравитационное поле черной дыры. Черная дыра поглощает световые лучи, проходящие вблизи нее, и отклоняет лучи, идущие на значительном расстоянии. Она может вступать в гравитационное взаимодействие с другими телами: удерживать возле себя планеты или образовывать двойные системы с другими звездами. Вещество, которое падает на черную дыру, разогревается до очень высоких температур и, прежде чем окончательно исчезнуть в черной дыре, выбрасывает во Вселенную интенсивное рентгеновское излучение.
Для поиска рентгеновских источников по всему небу в 1970 году на околоземную орбиту был запущен американский спутник «Ухуру», и с тех пор рентгеновские источники были открыты во многих двойных системах. В большинстве двойных систем, являющихся источниками рентгеновского излучения, масса невидимого компонента не превышает двух солнечных масс, а значит, это нейтронная звезда. Но некоторые объекты такого типа слишком массивны для нейтронных звезд. А потому предполагается, что в этом случае невидимым компонентом является черная дыра.
Первым кандидатом в черные дыры стал невидимый источник рентгеновского излучения Лебедь-X1, находящийся на расстоянии 8 000 световых лет от Земли. Видимый компонент этой двойной звездной системы — нормальная звезда с массой около 30 масс Солнца, а невидимый — с массой более чем 6 солнечных масс. А так как никакая нейтронная звезда не может содержать больше 3 масс Солнца, то отождествление Лебедя-Х1 с черной дырой представляется вполне вероятным. Но чтобы доказать, что это действительно черная дыра, в соответствии с теорией Эйнштейна, нужны детальные исследования процессов, происходящих в непосредственной близости от «горизонта событий».
Факт существования черных дыр очень важен для космологии, ведь он непосредственно свидетельствует о том, как Вселенная может скрывать большую часть своей материи.
Будущие космические миссии сосредоточат свое внимание главным образом на исследовании мощных супермассивных черных дыр в центрах галактик. Планируются также наблюдения и исследования так называемых джетов, выбрасываемых из окрестностей черных дыр в противоположных направлениях со скоростью, близкой к скорости света, и растягивающихся на миллиарды километров от черной дыры. Обсерватории, регистрирующие гамма-излучение, занимаются их исследованиями для того, чтобы понять механизм их образования. Предусматривается также спектроскопия очень высокого разрешения, которая, как надеются ученые, позволит измерить две основные характеристики черных дыр: массу и момент вращения. Еще планируется получение изображения в основаниях джетов в радиодиапазоне с очень высоким разрешением, что поможет выяснить, как «питаются» черные дыры и как создаются джеты.
Предполагается также создание новой рентгеновской космической обсерватории, более мощной, чем запущенная НАСА в 1999 году «Чандра», которая позволит разрешить «горизонт событий» супермассивных черных дыр в ядрах как близких галактик, так и Млечного Пути.
Людмила Князева, кандидат физико-математических наук
Арсенал: Красное небо
В тяжелейших воздушных сражениях 1943—1944 годов советские ВВС не только смогли сдержать натиск Люфтваффе, но и постепенно завоевать оперативное превосходство в воздухе, которое сохранилось до самого конца войны.
В тяжелейших воздушных сражениях 1943—1944 годов советские ВВС не только смогли сдержать натиск Люфтваффе, но и постепенно завоевать оперативное превосходство в воздухе, которое сохранилось до самого конца войны
Первой успешной для советских ВВС операцией в войне стало сражение в небе над Кубанью, длившееся с середины апреля до начала июня 1943 года. После разгрома под Сталинградом немецкие группы армий «А» и «Дон» закрепились в районе Ростова и на Таманском полуострове. Быстро построив на Тамани сильно укрепленную линию обороны, получившую название Голубая линия, немцы надежно прикрыли Крым, что позволяло им контролировать все морские коммуникации. Фактически все пространство между Черным и Азовским морями представляло собой сплошную линию обороны. В результате части Северо-Кавказского фронта, начавшие наступление в марте 1943 года, довольно быстро «увязли» в районе Новороссийска, неся большие потери. Выходом из сложившейся ситуации стала блестящая морская десантная операция, проведенная в районе Мысхако и позволившая советским войскам захватить небольшой плацдарм, получивший название Малая земля. Именно из-за Малой земли и развернулась крупнейшая с начала войны воздушная битва. 17 апреля одна из лучших в Люфтваффе эскадр пикирующих бомбардировщиков StG2 под командованием Эрнста Купфера начала «обработку» советского плацдарма, обрушив на него несколько сот тонн авиабомб. Только за один этот день немецкие пикировщики совершили около 500 боевых вылетов, то есть каждый из летчиков вылетал не менее 5 раз!