Журнал «Вокруг Света» № 12 за 2004 год (2771)
Шрифт:
Вопрос же о том, на кого конкретно возложить всю полноту ответственности за убийство Кирова – на Троцкого или Зиновьева, – решался просто. Троцкого еще пять лет назад выслали из СССР, и он теперь был недосягаем. В отличие от него Зиновьев жил и работал в Москве членом редколлегии теоретического органа партии журнала «Большевик». 16 декабря Зиновьева, а заодно и еще одного бывшего члена политбюро Каменева арестовали.
На следующий день в передовице газеты «Правда» появилось объяснение причины такой акции: «Гнусные, коварные агенты классового врага, подлые подонки бывшей зиновьевской антипартийной группы вырвали из наших рядов товарища Кирова». А через пять дней обвинение бывшего руководителя Коминтерна, который перед революцией вместе с Лениным скрывался в шалаше в Разливе, конкретизировали. «Мотивами убийства товарища
Кому же и, главное, зачем понадобилась такая трансформация – переквалифицирование преступления, совершенного явно на бытовой почве, да еще и психически нездоровым человеком, в политическое? Здесь возможен лишь один ответ – Сталину. И на то у него имелись весьма веские причины. Ведь убийство Кирова, будто манна небесная, давало ему неожиданный шанс одним махом разделаться со всеми своими политическими противниками, дискредитировать и опорочить их.
На пяти процессах по делу Николаева приговорили к расстрелу 17 человек, в том числе и его жену Милду. К тюремному заключению на срок от десяти до двух лет – 106. Отправили в ссылку, но уже без суда, еще 663 человека, а 325 – принудительно переселили из Ленинграда в другие города. Все репрессированные были членами партии, активными идейными сторонниками Троцкого и Зиновьева.
Юрий Жуков, доктор исторических наук
Ярмарка идей: Виртуальные маневры
Первые компьютерные тренажеры появились в начале 1970-х годов в самолетовождении: тогда летчики параллельно с летной практикой стали тренироваться, не поднимаясь с земли, – возле кинопроекционных экранов. Их тренажеры представляли собой копии кабин самолетов со всеми штатными приборами. С современной точки зрения они были достаточно примитивными и имели весьма ограниченные функции и тем не менее приносили немало пользы: обучаясь в таких кабинах, летчики закрепляли свои теоретические знания, в том числе и относительно назначения приборов.
Первые тренажеры были стационарными – все движения в машинах происходили только на экране. Сам же участник тренинга, сидя за штурвалом, не ощущал тряски и наклонов аппарата, поскольку кабина, пол и кресло тренажера оставались неподвижными. Но недостатки с имитацией действительности были исправлены довольно быстро: учебную кабину самолета стали устанавливать на специальную платформу, которая могла раскачиваться в различных направлениях, имитируя взлет, воздушные ямы, посадку и другие ситуации.
Сегодня подобных динамических платформ, предназначенных для разных видов техники, существует много: от подвижной копии кресла пилота до макета кабин многоместной летной и наземной техники. В основном динамические платформы различаются по количеству плоскостей, в которых может перемещаться тренажер. Простые платформы могут двигаться только в одной плоскости, более сложные имеют до шести степеней свободы. В последнем случае обучаемые перемещаются во всех трех координатных плоскостях. Для приведения динамических платформ в действие используются гидравлические, пневматические, электромеханические и электромагнитные двигатели. Но далеко не все нюансы движения реальной техники можно сымитировать, даже имея платформу с шестью степенями свободы. Поэтому компьютеру приходится немного обманывать вестибулярный аппарат человека, используя не только динамические воздействия, но и банальные «наклоны» тренажера. Например, создавая эффект езды по кругу, длительного торможения машины или, напротив, разгона, кабина тренажера просто наклоняется в нужную сторону на заданный угол.
Реализовать необходимую динамическую интерактивность платформы гораздо сложнее, нежели сгенерировать правдоподобные картинки на экранах мониторов. Имитируя движение, разработчики сталкиваются с жесткими физическими ограничениями, но за счет усовершенствования конструкции тренажеров, например создания большого свободного хода и использования мощного
Особо значимым при разработке и изготовлении тренажеров является видеоряд. С появлением первых учебных комплексов он стал основой обучающего процесса. Ведь человеку эпохи кинематографа было привычным вживаться в события, запечатленные на кинопленке, и принимать их как реальность. Так, кадры военной хроники на экране учебной машины стимулировали обучающегося быстро реагировать на изменяющуюся обстановку, правильно использовать имеющиеся приборы и привыкать к нестандартным ситуациям. Однако количество отрабатываемых на тренировках ситуаций было небольшим, к тому же взаимосвязь между ними и действиями обучаемого отсутствовала. Иными словами, мир на экране не зависел от его решений, и это было очень большим недостатком тренировки. Лишь по истечении времени с развитием компьютерных технологий программное обеспечение тренажера позволило скоординировать видеоряд с действиями обучающегося, и последний наконец-то оказался непосредственным участником разыгрываемых на экране ситуаций. А машина-тренажер в свою очередь стала имитировать довольно сложные моменты, например пробуксовку или прокол одного из колес автомобиля, обледенение фюзеляжа или отказ рулей высоты у самолета.
Реалистичность «картинки», которую человек видит через окуляры приборов или лобовое стекло, является сегодня одним из основных показателей качества тренажерных комплексов. И это понятно, ведь чем правдоподобнее картинка, тем легче соотнести тренажер с реальностью, тем проще вжиться в управление техникой и забыть о том, что рычаги, ручки и окна – не настоящие.
Основной проблемой для программистов здесь является все та же интерактивность, поскольку заранее подготовить и предугадать все нужные ракурсы, направления движений, ландшафты и пейзажи разыгрываемых ситуаций очень сложно. Компьютеру приходится синтезировать, то есть создавать на основе информации, находящейся в памяти, то изображение, которое должен видеть обучаемый с той точки, куда он успел долететь с учетом перемещения в пространстве его самого и его товарищей по учебному тренажерному классу. Примерами таких общедоступных «картинок» могут служить современные компьютерные игры, для которых визуальные параметры изображения также являются одним из основных показателей качества продукта.
Высокая реалистичность синтезируемого изображения может быть достигнута, например, путем увеличения подробности моделей, описывающих окружающую реальность. Но поскольку мощность доступных компьютеров всегда ограниченна, создателям тренажеров приходится идти на различные уловки, чтобы обеспечить должное качество изображения, не используя суперкомпьютеры. Наиболее частым приемом «обмана» является применение нескольких уровней детализации моделей на картинке. Чем дальше от наблюдателя находится объект, тем менее подробной является его модель. Например, отдельно стоящее дерево может быть представлено в виде столбика с картонным листом, вырезанным в форме кроны. А вот те объекты, которые находятся в непосредственной близости от центра событий в разыгрываемой на экране ситуации, будут изображены детально: на дереве появятся структура коры и четко нарисованные ветви.
Немаловажной частью внешнего вида трехмерных моделей является их текстура («раскраска модели»). И здесь зачастую используются фотографии реальной техники и объектов, что позволяет достигнуть необходимых уровней достоверности. Причем, если в компьютерных играх обычно используют фантастические пейзажи, то на экранах боевых тренажеров, напротив, работают только с реальными территориями и моделями, будь то аэропорты, улицы городов или же военные базы потенциального противника. Для заполнения этой базы данных используются аэрофотоснимки и снимки, сделанные из космоса, привлекаются данные радарных установок и градостроительные планы. Полный комплект таких моделей стоит порой не меньше, чем собственно динамическая платформа, компьютерные стойки, кабина и кинопроекционная система с большим разрешением.