Чтение онлайн

на главную

Жанры

Журнал «Вокруг Света» №12 за 2008 год
Шрифт:

Мы спешим под перестук их молоточков на утренний поезд в Мадрид. Пока туристы спят, рабочие снимают с фонарей гирлянды пожухшего розмарина и поникшие петунии. Свернутые в рулоны навесы лежат на тротуарах, поэтому солнце бьет прямо в глаза. В барах за карахильо (черный кофе с коньяком) местные фермеры обсуждают падение цен на свинину. Две старухи переругиваются через улицу с балконов — при желании одна могла бы достать другую шваброй. Среди пенсионеров, которые за газетой попивают кофе на площади Сокодовер, я узнаю «предводителя» мосарабов полковника Миранду. В клетчатом пиджаке он уже не очень похож на маркиза. Сильно пахнет кофе, чуть-чуть розмарином и нагревающимися камнями. Испанским духом пахнет.

Фото Алексея Бойцова

Анна

Папченко

Чудный новый miR

Клеточное ядро с двойными спиралями ДНК подобно корзине, наполненной генетическими инструкциями, каждую из которых нужно сначала достать, найти подходящий абзац и скопировать на молекулу РНК. Впрочем, многие участки ДНК туго свернуты и как будто обвязаны тесемками, так что прочитать их невозможно. В разных местах на гены-инструкции могут быть пришпилены скрепки — метильные группы, также делающие их нечитаемыми. Они могут сниматься и ставиться вновь, регулируя активность генов. Фото: ALAMY/PHOTAS

В конце XIX века великий Филипп Жолли уговаривал молодого Макса Планка не заниматься теоретической физикой. Она представлялась тогда в основном законченным и потому совершенно бесперспективным делом. Планк не послушался наставника и стал одним из создателей квантовой теории. За несколько десятилетий поразительных открытий от простой и стройной физической картины мира конца XIX века не осталось и следа. Век спустя сходная картина сложилась в молекулярной генетике. К началу 1990-х годов ее здание казалось в основном достроенным, оставалось лишь объяснить несколько незначительных фактов... Однако сегодня уже ясно, что эти представления были едва ли не столь же наивны, как рассуждения о генетике в терминах Ветхого Завета.

«Наноробот цепляет инфицированную клетку крови, ныряет внутрь нее и вставляет свой молекулярный штырь в механизм, который штампует вирусы, останавливая ее работу». Утопическая история в стиле великого прожектера нанотехнологий Эрика Дрекслера ? Никакой фантастики. Это всего лишь упрощенный пересказ научной работы, недавно опубликованной в одном из самых авторитетных научных журналов — Cell . Команда ученых из США , Южной Кореи и Германии почти добралась до чаши Грааля — им удалось остановить инфекцию вируса иммунодефицита человека (ВИЧ). Правда, пока только у мышей с пересаженной человеческой иммунной системой, но и это огромное достижение. Генетический аппарат, который при этом используется, 20 лет назад вообще не был известен, 10 лет считался редкой особенностью растений и червей, а сейчас за ним признают колоссальную роль в развитии всех высших организмов и ждут от него новых прорывов в медицине.

Когда гены казались простыми

Картина работы генетического аппарата представлялась в те годы довольно ясной. Генетическая информация хранится в ядре, закодированная в двойной спирали молекул ДНК. Она временно копируется на молекулы РНК, выносится ими из ядра клетки и используется для синтеза белков. Эта схема уже давно стала классической и вошла в школьные учебники. На ее основе расцвела генная инженерия — искусство целенаправленных манипуляций с генетической информацией в клетке. Казалось удивительным, что работа генетического кода устроена так остроумно и просто.

Генетический код в чем-то похож на компьютерную программу. Компьютерные инструкции записываются в цифровом виде на жестком диске компьютера, генетический код — тоже в цифровом виде на химическом носителе: двухцепочечной молекуле ДНК. С точки зрения классической генетики эта программа в неизменном виде передается из поколения в поколение. Ну или почти в неизменном — иногда случаются мутации. Процесс копирования программы во время деления клетки называется репликацией. В каждую дочернюю клетку, которая образуется в результате деления, попадает реплика, то есть точная копия каждого гена из материнской ДНК. С виду модель двойной спирали ДНК похожа на перекрученную застежку-молнию с четырьмя видами зубцов, которые стыкуются попарно. При репликации застежка-молния двойной спирали ДНК расходится, и на каждой из половинок достраивается другая лента.

Покинув ядро клетки, РНК несет генетическую депешу к огромному молекулярному комплексу — рибосоме. Здесь происходит трансляция — перевод генетического кода в структуру белковых молекул. Рибосома, двигаясь вдоль цепочки РНК (синяя), считывает код и добавляет к растущей молекуле белка (желтая) соответствующие аминокислоты. Фото: SPL/EAST NEWS

Генетическая программа должна не только копироваться, но и выполняться. В ходе ее работы создаются белки — главные молекулярные машины и строительные блоки живой клетки. Процесс происходит в два этапа. Вначале информация с ДНК транскрибируется — переписывается на другой, очень похожий носитель — молекулу РНК. От ДНК она отличается строением одного зубчика из четырех, а также основой, на которой эти зубчики сидят — она у РНК менее прочная. Причина понятна — если ДНК нужна для продолжительного хранения информации, то РНК — временный носитель, расходный материал, одноразовые дискеты или флэшки. Такая молекула РНК, на которую записана копия гена, называется информационной, или матричной (мРНК). Эта длинная цепочка — одна половинка «застежки-молнии» — может содержать до сотни тысяч зубчиков.

Когда переписывание информации завершено, мРНК выходит из клеточного ядра и встречается с рибосомой — образуется молекулярный конвейер по производству белка. Каждые три зубчика РНК кодируют один строительный блок белка — аминокислоту. Всего же в белках встречаются 20 видов таких строительных блоков, и они выстраиваются в цепочку строго в порядке, запрограммированном в РНК. Этот процесс называется трансляцией — в компьютерном мире этим термином обозначают перевод текста программы в исполняемый машинный код. Сходя с рибосомы, цепочка аминокислот сразу сворачивается и образует устойчивую трехмерную структуру. Именно в таком виде белки выполняют свои функции в клетке. Рибосомы могут неоднократно транслировать матричную РНК, раз за разом производя новые молекулы белка. Но мРНК неустойчива и через несколько часов разрушается. Поэтому считалось, что синтез каждого белка зависит главным образом от синтеза соответствующей мРНК в ядре клетки.

Конечно, схема эта сильно упрощена. Каждый из процессов — репликация, транскрипция и трансляция — мог включать дополнительные этапы. Например, выяснилось, что скопированная с ДНК молекула РНК по пути к рибосоме подвергается дополнительному редактированию — процессингу. При этом из РНК могут вырезаться значительные фрагменты кода, причем в некоторых случаях разные, а могут избирательно заменяться отдельные буквы генетического кода. Но все это не меняло сути представлений о прямой магистральной дороге от ДНК через РНК к белку.

Первые зерна сомнений по этому поводу взошли в 1990 году в горшках с петуниями по разные стороны океана. Неожиданно результаты получили специалисты из Амстердамского свободного университета и одновременно из не существующей сейчас американской компании DNA Plant Technology, которая в конце 1990-х попала под суд за махинации с трансгенным табаком.

Цвет неожиданности

Лепестки петунии могут иметь разный цвет в зависимости от активности ферментов, синтезирующих розовый или фиолетовый пигмент. Что будет с растениями, которым ввели дополнительные копии генов, кодирующие эти ферменты? Любой молекулярный биолог 20 лет назад ответил бы: разумеется, цвет лепестков станет более интенсивным. Однако заурядная работа по селекции дала парадоксальные результаты: цветки у трансгенных растений, которые должны были бы вырабатывать больше пигмента, частично или полностью теряли свой цвет. Это примерно как досыпать сахара в чай и почувствовать, что он от этого стал менее сладким.

Поделиться:
Популярные книги

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Кодекс Крови. Книга VI

Борзых М.
6. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VI

Горчаков. Пенталогия

Пылаев Валерий
Горчаков
Фантастика:
фэнтези
5.50
рейтинг книги
Горчаков. Пенталогия

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи