100 великих чудес техники
Шрифт:
Пользоваться очками совсем не трудно: надо надеть их и включить питание. Источником энергии для них служит плоский аккумулятор размерами с сигаретную пачку. Здесь же, в блоке, помещается и генератор.
Излучаемые им сигналы, натолкнувшись на преграду, возвращаются назад и улавливаются «линзами-приемниками». Принятые импульсы усиливаются, сравниваются с пороговым сигналом, и, если есть преграда, тотчас звучит зуммер – тем громче, чем ближе подошел к ней человек. Дальность действия прибора можно регулировать, используя один из двух диапазонов.
Работы по созданию электронной сетчатки успешно ведутся американскими специалистами НАСА и Главного центра при университете Джона Гопкинса.
На
Например, если у человека осталась хотя бы часть сетчатки, компьютер «расщепит» изображение таким образом, чтобы человек мог видеть окружающее хотя бы с помощью сохранившихся периферийных участков.
По оценкам разработчиков, подобные системы помогут примерно 2,5 миллионов людей, страдающих дефектами зрения. Ну а как быть с теми, у кого сетчатка практически полностью утрачена? Для них ученые глазного центра, работающего при университете Дюка (штат Северная Каролина), осваивают операции по вживлению электронной сетчатки. Под кожу имплантируются специальные электроды, которые, будучи соединены с нервами, передают изображение в мозг. Слепой видит картину, состоящую из отдельных светящихся точек, очень похожую на демонстрационное табло, что устанавливают на стадионах, вокзалах и в аэропортах. Изображение на «табло» опять-таки создают миниатюрные телекамеры, укрепленные на очковой оправе».
И, наконец, последнее слово науки на сегодняшний день – попытка методами современной микротехнологии создать новые чувствительные центры на поврежденной сетчатке. Такими операциями занимаются сейчас в Северной Каролине профессор Рост Пропет и его коллеги. Совместно со специалистами НАСА они создали первые образцы субэлектронной сетчатки, которая непосредственно имплантируется в глаз.
«Наши пациенты, конечно, никогда не смогут любоваться полотнами Рембрандта, – комментирует профессор. – Однако различать, где дверь, а где окно, дорожные знаки и вывески они все-таки будут…»
Томографы
Среди появившихся в последние годы методов диагностики особенно информативны, по мнению ученых-медиков, так называемые интраскопические методы, рентген-компьютерная томография, ядерно-магниторезонансная (ЯМР) томография и ЯМР-спектроскопия, а также позитронно-эмиссионная томография (ПЭТ).
Когда подозрительный участок или орган освещается лазерным импульсом, спектральный отклик – своего рода оптическая подпись – раковой ткани заметно отличается от отклика нормальной ткани. Наиболее известным сегодня примером трехмерной визуализации может служить компьютерная томография.
Обычные методы, даже при очень хорошей рентгеновской трубке и сверхчувствительной фотопленке, дают нечеткое и сильно «зашумленное» изображение, к тому же только двумерное, так что правильно его интерпретировать – отдельная наука.
«Методы диагностики за последние годы сделали небывалый скачок, – рассказывает академик Терновой, – благодаря компьютерным технологиям. Около 20 лет назад создали рентгеновский компьютерный томограф – и стало возможным изучать структуру человеческого мозга, не вскрывая черепную коробку. А нынешняя аппаратура обладает такими свойствами, что можно непосредственно наблюдать, например, сокращающееся сердце. Поэтому традиционная, инвазивная диагностика ("инвазия" означает "проникновение") постепенно уходит в прошлое. Скажем, с помощью магнитно-резонансного томографа внутренние органы видны в действии даже без введения контрастных веществ, которые «очерчивают» их контуры.
…Принцип его действия основан на двух тривиальных фактах: во-первых, человеческое тело состоит главным образом из воды, причем ее молекулы образуют химические связи с белками и другими структурами, разными в разных тканях; во-вторых, молекула воды есть диполь. В организме эти диполи ориентированы, разумеется, как попало и к тому же вращаются. Но если ненадолго поместить человека в магнитное поле (довольно сильное, но не настолько, чтобы представлять опасность для здоровья), все молекулы воды поворачиваются «лицом» в направлении его силовых линий. Затем подают особую радиочастоту – она придает диполям дополнительную энергию и отклоняет их от заданной магнитным полем ориентации на тот или иной угол. Собственно, в том и все дело, что углы разные, их величина зависит от внутренней структуры органа или ткани, а также – что особенно важно – от наличия патологий.
Внешний радиоимпульс подается всего на какое-то мгновение, но его достаточно. Потом молекулы воды возвращаются в прежнее положение, опять выстраиваясь в магнитном поле. При этом они сбрасывают лишнюю энергию – ее регистрируют особые катушки (даже если она очень мала!). Полученные данные поступают в компьютер, там обрабатываются…»
В отличие от традиционных рентгеновских методов томография представляет собой объемную реконструкцию внутренних органов на основе числовых данных, являющихся характеристиками физических свойств тканей. На ЯМР-томографе можно получить, например, трехмерное изображение плода. Врач может рассматривать мельчайшие детали, как угодно преобразовывать изображение, его можно также легко сжимать, архивировать, передавать по каналам связи для участия в телеконсилиумах и т д.
При обследовании на рентгеновском томографе пациент ложится на стол таким образом, чтобы та часть тела, изображение которой требуется получить, находилась бы в пределах кругового отверстия в раме томографа. В верхней части рамы обычно располагаются рентгеновский источник и коллиматор – устройство, преобразующее расходящийся пучок лучей в тонкий направленный поток. В нижней части рамы находится линейка детекторов рентгеновского излучения, как бы заменяющая пленку. При необходимости врач может предварительно ввести в организм пациента химическое вещество, позволяющее улучшить визуальный контраст между исследуемым органом и окружающими тканями. Когда включается рентгеновский источник, тонкие, как карандаш, лучи просвечивают тело и данные, регистрируемые детектором, передаются в компьютер. По мере того как рама поворачивается вокруг пациента, этот процесс повторяется много раз, и каждый раз данные от детекторов, соответствующие набору разных положений, обрабатываются компьютером.
Благодаря математическому алгоритму, основанному на известном в классической интегральной геометрии преобразовании Радона, набор численных показаний детекторов превращается в картинку на экране. Томографическая установка, основанная на явлении ядерного магнитного резонанса (ЯМР-томограф), обычно представляет собой трубу, содержащую длинный цилиндрический магнит, и обмотки, в которых возбуждается ток, соответствующий посылаемому и принимаемому радиочастотным сигналам. Строго говоря, магнитный резонанс – сугубо квантовое явление, и для его объяснения нужно привлекать стандартные квантово-механические понятия.