100 великих изобретений
Шрифт:
Понятно, что, работая в изменяющейся среде, робот должен постоянно получать о ней информацию, иначе он не сможет ориентироваться в окружающем пространстве. В связи с этим адаптивные роботы имеют значительно более сложную, чем роботы первого поколения, систему управления. Эта система распадается на две подсистемы: 1) сенсорную (или очувствления) — в нее входят те устройства, которые собирают информацию о внешней окружающей среде и о местоположении в пространстве различных частей робота; 2) ЭВМ, которая анализирует эту информацию и в соответствии с ней и заданной программой управляет перемещением робота и его манипулятора.
К сенсорным устройствам относятся тактильные датчики осязания, фотометрические датчики, ультразвуковые, локационные, а также различные системы технического зрения. Последние имеют особенно
Следующим этапом работы адаптивного робота обычно являются какие-то действия с этим предметом. Робот должен приблизиться к нему, захватить и переставить на другое место, притом не как попало, а определенным образом. Чтобы выполнить все эти сложные манипуляции, одних знаний об окружающей обстановке недостаточно — робот должен точно контролировать каждое свое движение и как бы «ощущать» себя в пространстве. С этой целью кроме сенсорной системы, отражающей внешнюю среду, адаптивный робот оснащается сложной системой внутренней информации: внутренние датчики постоянно передают ЭВМ сообщения о местоположении каждого звена манипулятора. Они как бы дают машине «внутреннее чувство». В качестве таких внутренних датчиков могут использоваться, например, высокоточные потенциометры.
Высокоточный потенциометр представляет собой прибор типа хорошо известного реостата, но отличающийся более высокой точностью. В нем вращающийся контакт не перескакивает с витка на виток, как при смещении ручки обычного реостата, а следует вдоль самих витков провода. Потенциометр крепится внутри манипулятора, так что при повороте одного звена относительно другого подвижный контакт тоже смещается и, следовательно, сопротивление прибора изменяется. Анализируя величину его изменения, ЭВМ судит о местоположении каждого из звеньев манипулятора. Скорость перемещения манипулятора связана со скоростью вращения электродвигателя в приводе. Имея всю эту информацию, ЭВМ может измерить скорость движения манипулятора и руководить его перемещением.
Каким же образом робот «планирует» свое поведение? В этой способности нет ничего сверхъестественного — «сообразительность» машины всецело зависит от сложности составленной для нее программы. В памяти ЭВМ адаптивного робота обычно заложено столько различных программ, сколько может возникнуть различных ситуаций. Пока ситуация не меняется, робот действует по базовой программе. Когда же внешние датчики сообщают ЭВМ об изменении ситуации, она анализирует ее и выбирает ту программу, которая более соответствует данной ситуации. Имея общую программу «поведения», запас программ для каждой отдельной ситуации, внешнюю информацию об окружающей среде и внутреннюю информацию о состоянии манипулятора, ЭВМ руководит всеми действиями робота.
Первые модели адаптивных роботов появились фактически одновременно с промышленными роботами. Прообразом для них послужил автоматически действующий манипулятор,
Робот приводился в движение с помощью двух шаговых электродвигателей, имеющих независимый привод к колесам на каждой стороне тележки. В верхней части робота, которая могла поворачиваться вокруг вертикальной оси, были установлены телевизионная камера и оптический дальномер. В центре располагался блок управления, который распределял команды, поступающие от ЭВМ к механизмам и устройствам, реализующим соответствующие действия. По периметру устанавливались сенсорные датчики для получения информации о столкновении робота с препятствиями. «Шейки» мог перемещаться по кратчайшему пути в заданное место помещения, вычисляя при этом траекторию таким образом, чтобы избежать столкновения (он воспринимал стены, двери, дверные проемы). ЭВМ из-за своих больших габаритов находилась отдельно от робота. Связь между ними осуществлялась по радио. Робот мог выбирать нужные предметы и перемещать их «толканием» (манипулятора у него не было) в нужное место.
Позже появились другие модели. Например, в 1977 году фирмой «Quasar Industries» был создан робот, который умел подметать полы, вытирать пыль с мебели, работать с пылесосом и удалять растекшуюся по полу воду. В 1982 году фирма «Мицубиси» объявила о создании робота, который был настолько ловок, что мог зажигать сигарету и снимать телефонную трубку. Но самым замечательным был признан созданный в том же году американский робот, который с помощью своих механических пальцев, камеры-глаза и компьютера-мозга менее чем за четыре минуты собирал кубик Рубика. Серийный выпуск роботов второго поколения начался в конце 70-х годов. Особенно важно то, что их можно успешно использовать на сборочных операциях (например, при сборке пылесосов, будильников и других несложных бытовых приборов) — этот вид работ до сих с большим трудом поддавался автоматизации. Адаптивные роботы стали важной составной частью многих гибких (быстро перестраивающихся на выпуски новой продукции) автоматизированных производств.
Третье поколение роботов — роботы с искусственным интеллектом — пока еще только проектируется. Их основное назначение — целенаправленное поведение в сложной, плохо организованной среде, притом в таких условиях, когда невозможно предусмотреть все варианты ее изменения. Получив какую-то общую задачу, такой робот должен будет сам разработать программу ее выполнения для каждой конкретной ситуации (напомним, что адаптивный робот может лишь выбирать одну из предложенных программ). В случае, если операция не удалась, робот с искусственным интеллектом сможет проанализировать неудачу, составить новую программу и повторить попытку.
97. ОРБИТАЛЬНАЯ КОСМИЧЕСКАЯ СТАНЦИЯ
Хотя история космонавтики насчитывает лишь несколько десятилетий, она прошла уже через ряд важных этапов. Начало освоению околоземного пространства положили короткие (продолжавшиеся, как правило, по несколько суток) экспедиции на типовых космических кораблях. Пилотировавшие их космонавты сделали много важных наблюдений и открытий. Но на определенном этапе эти непродолжительные челночные рейсы за атмосферу перестали удовлетворять науку. Космические корабли обладали небольшими размерами и имели много специфических особенностей, которые не позволяли использовать их для долговременных серьезных научных исследований. Чтобы стать в космосе твердой ногой, космонавты должны были разместиться здесь хотя бы с минимальными удобствами и иметь под рукой много разнообразной научной аппаратуры. Таким космическим домом и одновременно космической лабораторией стали первые орбитальные станции. Их появление было важной вехой в истории пилотируемых полетов: вместе с ними на смену героической эпохе первооткрывателей пришла пора будней и трудной каждодневной работы.