Чтение онлайн

на главную

Жанры

Шрифт:

86. ВЫЧИСЛИТЕЛЬНАЯ МАШИНА

Механизация и машинизация вычислительных операций — одно из основополагающих технических достижений второй трети XX века. Подобно тому, как появление первых прядильных машин послужило началом великого промышленного переворота XVIII-XIX веков, создание электронной вычислительной машины стало предвестником грандиозной научно-технической и информационной революции второй половины XX столетия. Этому важному событию предшествовала длинная предыстория. Первые попытки собрать счетную машину предпринимались еще в XVII веке, а простейшие вычислительные приспособления, типа абака и счет, появились еще раньше — в древности и средневековье.

Хотя автоматическое вычислительное устройство относится к роду машин, его нельзя

поставить в один ряд с промышленными машинами, скажем, с токарным или ткацким станком, ведь в отличие от них оно оперирует не физическим материалом (нитями или деревянными заготовками), а идеальными, не существующими в природе числами. Поэтому перед создателем любой вычислительной машины (будь то простейший арифмометр или новейший суперкомпьютер) стоят специфические проблемы, не возникающие у изобретателей в других областях техники. Их можно сформулировать следующим образом: 1. Как физически (предметно) представить числа в машине? 2. Как осуществить ввод исходных числовых данных? 3. Каким образом смоделировать выполнение арифметических операций? 4. Как представить вычислителю введенные исходные данные и результаты вычислений?

Одним из первых эти проблемы преодолел знаменитый французский ученый и мыслитель Блез Паскаль. Ему было 18 лет, когда он начал работать над созданием особой машины, с помощью которой человек, даже не знакомый с правилами арифметики, мог бы производить четыре основных действия. Сестра Паскаля, бывшая свидетельницей его работы, писала позже: «Эта работа утомляла брата, но не из-за напряжения умственной деятельности и не из-за механизмов, изобретение которых не вызывало у него особых усилий, а из-за того, что рабочие с трудом понимали его». И это неудивительно. Точная механика только рождалась, и качество, которого требовал Паскаль, превышало возможности его мастеров. Поэтому изобретателю самому нередко приходилось браться за напильник и молоток или ломать голову над тем, как изменить в соответствии с квалификацией мастера интересную, но сложную конструкцию. Первая работающая модель машины была готова в 1642 году. Паскаля она не удовлетворила, и он сразу же начал конструировать новую. «Я не экономил, — писал он впоследствии о своей машине, — ни времени, ни труда, ни средств, чтобы довести ее до состояния быть полезной… Я имел терпение сделать до 50 различных моделей…» Наконец в 1645 году усилия его увенчались полным успехом — Паскаль собрал машину, которая удовлетворяла его во всех отношениях.

Что же представляла из себя эта первая в истории вычислительная машина и каким образом были разрешены перечисленные выше задачи? Механизм машины был заключен в легкий латунный ящичек. На верхней его крышке имелось 8 круглых отверстий, вокруг каждого из которых была нанесена круговая шкала. Шкала крайнего правого отверстия делилась на 12 равных частей, шкала соседнего с ним отверстия — на 20 частей, остальные шесть отверстий имели десятичное деление. Такая градуировка соответствовала делению ливра — основной французской денежной единицы того времени: 1 су = 1/20 ливра и 1 денье = 1/12 су. В отверстиях были видны зубчатые установочное колеса, находившиеся ниже плоскости верхней крышки. Число зубьев каждого колеса было равно числу делений шкалы соответствующего отверстия.

Ввод чисел осуществлялся следующим образом. Каждое колесо вращалось независимо от другого на собственной оси. Поворот производился с помощью ведущего штифта, который вставлялся между двумя смежными зубьями. Штифт поворачивал колесо до тех пор, пока не наталкивался на неподвижный упор, закрепленный в нижней части крышки и выступающий внутрь отверстия левее цифры "1" круговой шкалы. Если, например, штифт ставили между зубьями 3 и 4 и вращали колесо до упора, то оно поворачивалось на 3/10 своей полной окружности. Поворот каждого колеса передавался посредством внутреннего механизма цилиндрическим барабанам, оси которых были расположены горизонтально. На боковой поверхности барабанов были нанесены ряды цифр.

Сложение чисел, если сумма их не превышала 9, происходило очень просто и соответствовало сложению пропорциональных им углов. При сложении больших чисел должна была производиться

операция, которая называется переносом десятка в старший разряд. Люди, считающие в столбик или на счетах, должны производить ее в уме. Машина Паскаля выполняла перенос автоматически, и это было ее наиболее важной отличительной чертой.

Элементами машины, относящимися к одному разряду, были установочное колесо N, цифровой барабан I и счетчик, состоящий из четырех корончатых колес B, одного зубчатого колеса K и механизма передачи десятков.

Заметим, что колеса B1, B2 и K не имеют принципиального значения для работы машины и использовались лишь для передачи движения установочного колеса N цифровому барабану I. Зато колеса B3 и B4 являлись неотъемлемыми элементами счетчика и поэтому именовались «счетными колесами». Счетные колеса двух соседних разрядов A1 и A2, были жестко насажены на оси. Механизм передачи десятков, который Паскаль назвал «перевязь», имел следующее устройство. На счетном колесе B1 младшего в машине Паскаля разряда имелись стерженьки C1, которые при вращении оси A1 входили в зацепление с зубьями вилки M, расположенной на конце двухколенного рычага D1. Этот рычаг свободно вращался на оси A2 старшего разряда, вилка же несла на себе подпружиненную собачку. Когда при вращении оси A1 колесо B1 достигало позиции, соответствующей цифре 6, стержни C1 входили в зацепление с зубьями вилки, а в тот момент, когда оно переходило от 9 к 0, вилка выскальзывала из зацепления и под действием собственного веса падала вниз, увлекая за собой собачку. Последняя при этом проталкивала счетное колесо B2 старшего разряда на один шаг вперед (то есть поворачивая его вместе с осью A2 на 36 градусов). Рычаг H, оканчивавшийся зубом в виде топорика, играл роль зацепки, препятствовавшей вращению колеса B1 в обратную сторону при поднимании вилки.

Механизм переноса действовал только при одном направлении вращения счетных колес и не допускал выполнения операции вычитания вращением колес в обратную сторону. Поэтому Паскаль заменил вычитание сложением с десятичным дополнением. Пусть, например, необходимо из 532 вычесть 87. Метод дополнения приводит к действиям: 532-87=532-(100-13)=(532+13)-100=445. Нужно только не забывать вычесть 100. На машине, имевшей определенное число разрядов, об этом, впрочем, можно было не беспокоиться. Действительно, пусть на шестиразрядной машине выполняется вычитание 532-87. Тогда 000532+999913=1000445. Но самая первая единица потеряется сама собой, так как переносу из шестого разряда некуда деться.

Умножение также сводилось к сложению. Но поскольку в машине Паскаля слагаемое вводилось каждый раз заново, использовать ее для выполнения этой арифметической операции было крайне трудно.

Следующий этап в развитии вычислительной техники связан с именем знаменитого немецкого математика Лейбница. В 1672 году Лейбниц посетил голландского физика и изобретателя Гюйгенса и был свидетелем того, как много времени и сил отнимали у него разнообразные математические расчеты. Тогда у Лейбница и появилась мысль о создании арифмометра. «Это недостойно таких замечательных людей, — писал он, — подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машин». Однако создание такой машины потребовало от Лейбница всей его изобретательности. Его знаменитый 12-разрядный арифмометр появился только в 1694 году и обошелся в круглую сумму — 24000 талеров.

В основе механизма машины лежал изобретенный Лейбницем ступенчатый валик, представлявший собой цилиндр с нанесенными на нем зубцами различной длины. В 12-разрядном арифмометре таких валиков было 12 — по одному на каждый разряд числа.

Арифмометр состоял из двух частей — неподвижной и подвижной. В неподвижной помещался основной 12-разрядный счетчик и ступенчатый валик устройства ввода. Установочная часть этого устройства, состоявшая из восьми малых цифровых кругов, была расположена в подвижной части машины. В центре каждого круга располагалась ось, на которую под крышкой машины было насажено зубчатое колесо E, а поверх крышки установлена стрелка, которая вращалась вместе с осью. Конец стрелки мог быть установлен против любой цифры круга.

Поделиться:
Популярные книги

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Пустоши

Сай Ярослав
1. Медорфенов
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пустоши

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Наследник в Зеркальной Маске

Тарс Элиан
8. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник в Зеркальной Маске

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Светлая ведьма для Темного ректора

Дари Адриана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Светлая ведьма для Темного ректора

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Академия

Сай Ярослав
2. Медорфенов
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Академия