100 великих изобретений
Шрифт:
Вторая идея Голлерита была следствием первой — он создал первый в мире счетно-перфорационный комплекс, включавший в себя входной перфоратор (для пробивки отверстий) и табулятор с устройством для сортировки перфокарт. Перфорация осуществлялась вручную на пробойнике, состоявшем из чугунного корпуса с приемником для карты и собственно пробойника. Над приемником помещалась пластина с несколькими рядами отверстий; при нажиме рукояти пробойника над одним из них карта под пластинкой пробивалась нужным образом. Сложный пробойник пробивал на группе карт общие данные одним нажатием руки. Сортировочная машина представляла собой несколько ящиков с крышками. Карты продвигались вручную между набором пружинных штырей и резервуарами, наполненными ртутью. Когда штырь попадал в отверстие, он касался ртути и замыкал электрическую цепь. При этом приподнималась крышка определенного ящика, и оператор клал туда карту. Табулятор (или суммирующая машина) прощупывал отверстия на перфокартах, воспринимая их как соответствующие
Первый патент (на идею) Голлерит получил в 1884 году. В 1887 году его машина была испытана в Балтиморе при составлении таблиц смертности населения. В 1889 году состоялось решающее испытание системы — проводилась пробная перепись в четырех районах города Сан-Луи. Машина Голлерита намного опередила две конкурирующие с ней ручные системы (она работала в 10 раз быстрее). После этого правительство США заключило с Голлеритом договор о поставке оборудования к переписи 1890 года. Результаты этой переписи благодаря табулятору были обработаны всего за два года. Вследствие этого машина очень быстро получила международное признание и употреблялась во многих странах при обработке данных переписи населения.
В 1902 году Голлерит создал автоматический табулятор, в котором карты подавались не вручную, а автоматически, и модернизировал свою сортировочную машину. В 1908 году он создал принципиально новую модель суммирующей машины. Вместо чашек с ртутью здесь применялись контактные щетки, с помощью которых замыкались электрические цепи электромагнитов. Последние обеспечивали соединение и разъединение непрерывно вращающегося вала с цифровыми колесами счетчика сумматора. Цифровые колеса поворачивались через зубчатые зацепления от непрерывно вращающегося вала, который нес на себе скользящие кулачковые муфты, управляемые электромагнитами. Когда под контактной щеткой оказывалось отверстие, замыкалась электрическая цепь соответствующего электромагнита, и он включал муфту, которая подсоединяла цифровое колесо к вращающемуся валу, после чего содержимое счетчика в данном разряде увеличивалось на число, пропорциональное одному повороту колеса. Передача десятков осуществлялась примерно так же, как в разностной машине Бэббиджа.
Дело, начатое Голлеритом, имеет продолжение и в наше время. Еще в 1896 году он основал фирму «Табьюлейтинг Машин Компани», специализирующуюся на выпуске счетно-перфорационных машин и перфокарт. В 1911 году, после того как Голлерит оставил предпринимательскую деятельность, его фирма слилась с тремя другими и была преобразована в широко известную сейчас во всем мире корпорацию IBM — крупнейшего разработчика в области вычислительной техники.
В табуляторе Голлерита впервые были использованы электромеханические элементы. Дальнейшее развитие вычислительной техники было связано с широким и многогранным применением электричества. В 1938 году немецкий инженер Конрад Цузе создал первую в истории релейную электронно-вычислительную машину Z1 на телефонных реле (записывающее устройство в ней оставалось механическим). В 1939 году появилась более совершенная модель Z2, а в 1941 году Цузе собрал первую в мире действующую вычислительную машину с программным управлением, в которой использовалась двоичная система. Все эти машины погибли во время войны и поэтому не оказали большого влияния на дальнейшую историю вычислительной техники.
Независимо от Цузе постройкой релейных вычислительных машин занимался в США Говард Айкен. Будучи аспирантом Гарвардского университета, Айкен при работе над своей диссертацией был вынужден делать много сложных вычислений. Чтобы сократить время на вычислительную работу, он стал придумывать несложные машины для автоматического решения частных задач. В конце концов он пришел к идее автоматической универсальной вычислительной машины, способной решать широкий круг научных задач. В 1937 году его проектом заинтересовалась фирма IBM. В помощь Айкену была выделена бригада инженеров. Вскоре началась работа над постройкой машины «Марк-1». Реле, счетчики, контактные и печатающие устройства ввода и вывода перфокарт были стандартными частями табуляторов, выпускаемых IBM. В 1944 году машина была собрана и передана Гарвардскому университету.
«Марк-1» оставался машиной переходного типа. В ней широко использовались механические элементы для представления чисел и электромеханические для управления работой машины. Как и
Умножение и деление производились в отдельном устройстве. Кроме того, в машине имелись встроенные блоки для вычисления функций sin x, log x и некоторых других. Скорость выполнения арифметических операций в среднем составляла: сложение и вычитание — 0, 3 секунды, умножение — 5, 7 секунды, деление — 15, 3 секунды. То есть «Марк-1» был эквивалентен примерно 20 операторам, работающим с ручными счетными машинами.
Работой «Марк-1» управляли команды, вводимые с помощью перфорированной ленты. Каждая команда кодировалась посредством пробивки отверстий в 24 колонках, идущих вдоль ленты, и считывалась с помощью контактных щеток. Пробивка на перфокартах преобразовывалась в набор импульсов. Совокупность электрических сигналов, полученных в результате «прощупывания» позиций данного ряда, определяла действия машины на данном шаге вычислений. Устройство управления на основании этих команд обеспечивало автоматическое выполнение всех вычислений в данной программе: осуществляло выборку чисел из ячеек памяти, давало команду требуемой арифметической операции, отправляло результаты вычислений в запоминающее устройство и т.д. В качестве устройства вывода Айкен использовал пишущие машины и перфораторы.
Вслед за пуском «Марк-1» Айкен и его сотрудники начали работу над «Марком-2», закончившуюся в 1947 году. В этой машине уже не было механических цифровых колес, а для запоминания чисел, выполнения арифметических операций и операций управления использовались электрические реле — всего их было 13 тысяч. Числа в «Марк-2» представлялись в двоичном виде.
Двоичная система исчисления была предложена еще Лейбницем, который считал ее самой удобной для использования в вычислительных машинах. (Трактат на эту тему был написан в 1703 году.) Им же была разработана арифметика двоичных чисел. В двоичной системе, точно так же как в привычной нам десятичной, значение каждой цифры определяется ее позицией, но вместо обычного набора из десяти цифр используются только две: 0 и 1. Для того чтобы понять двоичную запись числа, посмотрим сначала, какой смысл имеет хорошо всем известная десятичная запись. Например, число 2901 можно представить в следующем виде:
2901 = 2 • 103 + 9 • 102 + 0 • 101 + 1 • 100
То есть, цифры: 2, 9, 0, 1 указывают на то, сколько единиц находится в каждом из десятичных разрядов числа. Если же вместо десятичной системы берется двоичная, каждая цифра будет указывать на то, сколько единиц содержится в каждом из двоичных разрядов. Например, число 13 записывается в двоичной системе так:
13 = 8 + 4 + 1 = 1 • 23 + 1 • 22 + 0 • 21 + 1 • 20 = 1101
Двоичная система достаточно громоздка (скажем, число 9000 будет в ней 14-значным), но она очень удобна при выполнении арифметических операций. Вся таблица умножения в ней сводится к единственному равенству 1•1=1, а сложение имеет только три правила: 1) 0+0 дает 0; 2) 0+1 дает 1; 3) 1+1 дает 0 и перенос 1 в старший разряд.
Например:
01010
+01011
10101
Утверждение двоичной системы в вычислительной технике было обусловлено существованием простых технических аналогов двоичной цифры — электрических реле, которые могли находиться в одном из двух устойчивых состояний, первое из которых ставили в соответствие с 0, другое — с 1. Передача двоичного числа электрическими импульсами из одного машинного устройства в другое тоже очень удобна. Для этого достаточно всего двух различных по форме импульсов (или даже одного, если отсутствие сигнала считать за нуль).