Чтение онлайн

на главную - закладки

Жанры

100 великих научных достижений России
Шрифт:

А.Н. Лодыгин

В молодости Лодыгина бросало в разные, причем самые новые, мало изученные области техники. В конце 1860-х гг. Александр одновременно занялся созданием летательного аппарата вертикального взлета – электролета (геликоптера, вертолета) и водолазного аппарата. Летательный аппарат, отвергнутый российским военным министерством, настолько заинтересовал французов, воевавших тогда с Пруссией, что они вызвали Лодыгина к себе. Увы, пруссаки победили, а мир, быть может, лишился великого изобретения. 40 лет спустя инженер вернулся к идее электролета, но и тогда она оказалась преждевременной и была использована много позднее. Проект автономного водолазного скафандра с применением газовой смеси, состоящей из водорода и кислорода,

вырабатываемого из воды путем электролиза, предложенный изобретателем в 1871 г., фактически явился прообразом акваланга.

Но именно работы по электрооборудованию электролета для ночного освещения привели Лодыгина к созданию его главного детища. Начав свои опыты с исследования электрической дуги, инженер обратил внимание на то, что раскаленные концы угольных стержней светят ярче дуги, и тут же стал подыскивать материалы, которые при пропускании тока светились бы не только ярко, но и как можно дольше не перегорали. Остановился изобретатель на двух тонких стержнях из ретортного угля, помещаемых в стеклянный баллон, из которого насосом был откачан воздух. Первые лампочки светились желтоватым светом полчаса, новые модификации – один час, полтора, потом все дольше и дольше…

Впервые лампочку накаливания Лодыгин продемонстрировал для военных на полигоне Волково Поле в Петербурге в 1870 г.

В 1871–1872 гг. изобретатель провел несколько публичных показов электрического освещения лампами накаливания, запитанными от батарей либо от магнитоэлектрических машин переменного тока – в Технологическом институте и Адмиралтействе, в Галерной гавани и на Одесской улице Северной столицы. Этими акциями инженер показал не только самые широкие возможности использования нового освещения, но и возможность «дробить свет», то есть включать большое число источников света в цепь одного генератора электрического тока – эта задача считалась едва ли не самой трудновыполнимой в то время.

Еще два лодыгинских изобретения остались в лампе накаливания – это закрученная в форме спирали нить накаливания и наполнение лампочек инертным газом.

Тогда же Лодыгин подал заявку в Департамент торговли и мануфактур на «Способ и аппараты дешевого электрического освещения», которая болталась по канцеляриям министерства больше двух лет.

В 1874 г. Александр Николаевич получил патент на свою лампу (привилегия № 1619 от 11 июля 1874 г.), после чего запатентовал изобретение в Австро-Венгрии, Испании, Португалии, Италии, Бельгии, Франции, Великобритании, Швеции, Саксонии, Индии и Австралии. В том же году Петербургская АН присвоила Лодыгину ежегодную Ломоносовскую премию.

До ума изобретатель довел свою лампочку после того, как перепробовал в качестве угольных стержней множество материалов. В 1893–1894 гг. Лодыгин получил американские патенты на лампы накаливания с нитью из вольфрама, молибдена и тантала и продемонстрировал новые источники света на Парижской выставке.

Относительная дешевизна ламп, простота их включения, компактность, отсутствие инерционности, малая зависимость параметров от температуры окружающей среды, достаточно высокая надежность и устойчивость к внешним механическим воздействиям и пр. обеспечили им зеленую улицу. И хотя сегодня изобретены другие, более совершенные и долговечные излучатели, лампы накаливания по-прежнему производят в громадных количествах, и они остаются одними из основных источников света.

А.Н. Лодыгина называли «русским Прометеем», «отцом электротермии», «кающимся дворянином». «Последнее определение говорит о глубокой внутренней порядочности и совестливости… Это же подтверждает и участие Лодыгина в народническом движении. Принято считать, что одним из двигателей его научных изысканий было стремление заменить лучины и керосиновые светильники на электрическое освещение в каждом русском доме и избе».

ФОТОЭФФЕКТ СТОЛЕТОВА

Физик, историк и популяризатор науки, философ, лектор, общественный деятель; профессор Московского университета; участник международных научных конгрессов; организатор первой в России учебно-исследовательской физической лаборатории при Московском университете; основатель и глава первой научной школы физиков; председатель физического отделения Общества любителей естествознания, кавалер золотой медали общества; директор физического отдела при Политехническом музее; член 8 русских и иностранных ученых обществ, почетный член Императорского университета Святого Владимира, Александр Григорьевич Столетов (1839–1896) является одним из основоположников русской физики. Наиболее важные работы были выполнены Столетовым в области фотоэффекта.

А.Г. Столетов заложил основы русской физики своими трудами и научной школой, воспитавшей десятки выдающихся ученых: П.Н. Лебедева, Н.Е. Жуковского, С.А. Чаплыгина, А.П. Соколова, Б.В. Станкевича. Н.Н. Шиллера, В.С. Щегляева, П.A. Зилова и др.

Из фундаментальных исследований Столетова в области оптики, электромагнетизма и молекулярной физики выделим фотоэффект, работами по которому ученый вписал славную страницу в развитие отечественной физики. Изучению этого явления Столетов посвятил два года жизни (1888–1890). Эти исследования называли тогда актино-электрическими.

К этому времени русский физик был известен своими экспериментальными работами по электростатике и электромагнетизму. Изучая магнитные свойства железа, Столетов нашел зависимость магнитной восприимчивости железа от величины намагничивающего поля (докторская диссертация «Исследования функции намагничивания мягкого железа»). Определяя свойства ферромагнетиков, ученый получил кривую магнитной проницаемости, названную его именем. Исследователь предложил два классических метода магнитных измерений веществ – метод тороида с замкнутой магнитной цепью и баллистическое измерение намагниченности. О своих исследованиях по определению коэффициентов пропорциональности между электростатическими и электромагнитными единицами Столетов доложил на I Всемирном конгрессе электриков в Париже (1881), чем способствовал утверждению электромагнитной теории света. На этом конгрессе по предложению русского ученого была утверждена единица электрического сопротивления – Ом, а также эталон сопротивления, то есть был сделан первый шаг к созданию системы единиц электрических измерений. Предложенные Столетовым теория намагничивания и методы испытаний магнитных свойств железа стали импульсом для развития электротехники в мире.

Памятник А.Г. Столетову у физфака МГУ. Скульптор С.И. Селиханов

Внешний фотоэффект – явление испускания электронов веществом под действием света открыл немецкий физик Г. Герц в 1887 г. Облучая один из двух металлических шаров разрядника для излучения электромагнитных волн ультрафиолетовыми лучами, Герц зафиксировал усиление электрического разряда между шарами.

В это же самое время изучением данного явления занимались независимо друг от друга сразу несколько ученых. Немецкий физик В. Гальвакс наблюдал, как заряжается положительно облученная ультрафиолетовым светом металлическая пластинка, итальянский исследователь А. Риги установил возможность фотоэффекта в металлах и в диэлектриках. Русский ученый А.Г. Столетов впервые провел всесторонние экспериментальные исследования и определил природу и основные закономерности этого явления, предложил количественные методы исследования фотоэффекта и фотоэлектрического контроля интенсивности света.

В своих опытах Столетов хотел выяснить, какое количество фотоэлектронов (он называл их зарядами) вырывается с поверхности вещества, от чего зависит их число и чему равна их кинетическая энергия. Ученый помещал в вакуумированный стеклянный баллон сетчатый конденсатор (металлическую сетку – анод и плоский цинковый диск – катод). Катод, подсоединенный к отрицательному полюсу батареи, облучался ультрафиолетовым излучением от вольтовой дуги через специальное кварцевое окошко. На электроды подавалось напряжение, изменяемое потенциометром.

Поделиться:
Популярные книги

Утопающий во лжи 4

Жуковский Лев
4. Утопающий во лжи
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Утопающий во лжи 4

Пожиратель душ. Том 1, Том 2

Дорничев Дмитрий
1. Демон
Фантастика:
боевая фантастика
юмористическая фантастика
альтернативная история
5.90
рейтинг книги
Пожиратель душ. Том 1, Том 2

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Темный Патриарх Светлого Рода 4

Лисицин Евгений
4. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 4

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Провинциал. Книга 3

Лопарев Игорь Викторович
3. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 3