100 великих тайн Вселенной
Шрифт:
«На ленте, выходящей из-под пера самописца, я видела, что сигнал состоит из ряда импульсов. Мое предположение о том, что импульсы следуют один за другим через одинаковые промежутки времени, подтвердилось сразу же, как только лента была вынута из прибора, – вспоминала впоследствии Белл. – Импульсы были разделены интервалом в одну и одну треть секунды… Источник со всей очевидностью имел неземное происхождение, поскольку сигнал появлялся каждый раз, когда телескоп зондировал этот участок неба. С другой стороны, импульсы выглядели так, как будто их посылают люди…»
А вскоре Джоселин Белл обнаружила еще
Джоселин Белл первой приняла радиосигнал из Глубин Вселенной
Самым удивительным для астрономов в поведении пульсаров был тот факт, что у них очень быстро менялась интенсивность излучения.
Если, например, у наиболее быстрых переменных звезд блеск может меняться в течение одного часа, а порой и еще быстрее, а блеск белого карлика в одной из двойных звездных систем в созвездии Геркулеса изменяется с периодом 70 секунд, то пульсары намного превзошли эти результаты. Оказалось, что интенсивность радиоизлучений изменяется за десятитысячные доли секунды.
Более того, дальнейшие исследования показали, что объект, от которого исходит импульс, имеет в поперечнике не больше нескольких сотен километров. А ведь это для космических масштабов мизерные размеры. Например, диаметр Земли равен примерно 13 тысячам километров.
А вскоре сообщения о вновь обнаруженных пульсарах стали поступать из многих обсерваторий мира. Сегодня астрономами зафиксировано более трехсот этих небесных тел. Периоды их лежат в пределах от 0,0016 секунд до 4,3 секунды. Кроме того, известно шестнадцать пульсаров, периоды которых менее 12 миллисекунд.
Самый близкий пульсар расположен от Земли на расстоянии около 60 парсеков, то есть в десятки раз дальше, чем ближайшие звезды. Самый же далекий пульсар находится в 25 килопарсеках от нашей планеты, т.е. далеко за центром Галактики.
Кроме Млечного Пути, пульсары отмечены и в других галактиках. Например, их обнаружили в Большом и Малом Магеллановых Облаках, а также в шаровых скоплениях.
Хотя по форме отдельные импульсы все же незначительно отличаются один от другого, тем не менее период пульсара является практически неизменным. Случается, что импульсы от пульсара внезапно пропадают, но после возобновления приема в точности повторяют прежний ритм.
Правда, еще в самом начале их изучения астрономы обнаружили, что период многих пульсаров постепенно увеличивается, то есть со временем они становятся «медленнее». В то же время частота следования импульсов меняется очень незначительно: чтобы период пульсара удвоился, должно пройти примерно 10 миллионов лет.
Невероятная анатомия пульсара
Конечно, ученых интересуют не только физические характеристики пульсаров. Им важно также знать: что же представляют сами по себе эти космические объекты?
Во-первых, следует отметить, что сегодня астрономам уже точно известно, что пульсары равномерно распределены среди звезд. Это значит, что сигналы от пульсаров достигают радиотелескопов спустя многие тысячи лет.
Из этого в свою очередь следует, что излучения пульсаров должны быть огромной интенсивности, чтобы их, учитывая гигантские расстояния, можно было зарегистрировать на Земле…
Итак, что же такое пульсары? Астрономам хорошо известно, что область пространства, в которой зафиксированы сигналы от пульсара, очень незначительна. В связи с этим возникает вполне логичный вопрос: какие процессы должны происходить в такой небольшой области столь быстро и с такой точностью, чтобы ими можно было объяснить феномен пульсара?
Возможно, это звезды, аналогичные цефеидам, периодически «раздувающиеся» и вновь сжимающиеся? Но ведь период изменения блеска цефеид составляет несколько суток, в то время как пульсары осциллируют с периодом в сотые доли секунды.
Более того, даже белые карлики, которые являются самыми плотными звездами, не в состоянии совершать столь быстрые колебания. Возникает вопрос: могут ли звезды иметь еще более высокую плотность, чем у карликов? Ведь она у них несколько тонн на кубический сантиметр?
Но еще в 1934 году некоторые ученые утверждали, что могут существовать звезды с исключительно высокой плотностью, то есть почти полностью состоящие из одних нейтронов.
Анализ же модели таких звезд показывает, что их плотность должна быть очень велика: в шаре диаметром 30 километров должна быть заключена масса, равная солнечной. Иначе говоря, в одном кубическом сантиметре такой звезды содержатся миллиарды тонн нейтронной материи. Но нейтронные звезды, если заставить их осциллировать, будут делать это гораздо быстрее, чем пульсары.
Крабовидная туманность с пульсаром в центре
Казалось бы, на этом основании участие нейтронной звезды в появлении пульсаров можно было отбросить.
Но тут на сцене появляется преподаватель Корнельского университета Томас Голд, предположивший, что, возможно, периодичность пульсаров связана с вращательным движением неизвестного объекта, который должен совершать полный оборот менее чем за секунду.
Однако для звезды имеется определенный предел вращения. И связано это с тем, что при слишком высокой скорости она будет разрушена центробежными силами. В целом же предельная скорость вращения звезды определяется величиной гравитации на ее поверхности. Например, для белого карлика этот предел равен примерно одному обороту в секунду. Чтобы вращаться с большей скоростью, звезда должна иметь и более высокую плотность.
А такую плотность, как известно, имеют нейтронные звезды. И Голд предположил, что скорее всего периодические «вспышки» пульсара и объясняются вращением нейтронной звезды, которая совершает один оборот вокруг своей оси за доли секунды. И такая ситуация вполне вероятна, поскольку сила тяжести на поверхности нейтронной звезды достаточно велика. Кроме того, нейтронная звезда может иметь и более высокую скорость вращения.