Чтение онлайн

на главную

Жанры

Шрифт:

В 1891 г. Маннесманы создали пильгер – стан для раскатки короткой толстостенной гильзы в длинную трубу с нормальной толщиной стенки. Он состоял из двух валков, имеющих калибры переменного сечения по окружности.

Возрастание скорости прокатки требовало автоматической передачи полосы из клети в клеть или из одного ручья в другой. Эта задача была решена созданием специальных приспособлений – автоматических проводок (обводок).

В 1877 г. Мак-Каллип предложил проводку для передачи прокатываемой полосы из верхней пары валков одной клети в нижнюю пару валков другой клети. Этот процесс усовершенствовали в начале XX в. Шепф и Мозаннер. Это решило проблему безопасной эксплуатации и высокопроизводительной работы прокатных станов.

В конце XIX в. в прокатном производстве применялись различные системы, передающие движение от двигателя к прокатным станам. Наиболее распространенным был групповой привод, в котором энергия

передавалась ременными и канатными передачами. Для выравнивания хода двигателя на его валу устанавливался маховик. Сообщенная маховику во время ускорения хода машины кинетическая энергия расходовалась в остальное время для плавной и равномерной работы стана.

Позже появился электрический привод. Его особенность – плавность включения и быстродействие. Электропривод позволил точно регулировать скорости прокатных валков и создать станы с автоматизированным управлением. Впервые такой привод был применен в 1897 г. в Германии. Наиболее рациональным стал вариант, в котором каждый валок приводится в действие отдельным электродвигателем.

В 30-е годы XX в. прокатные станы были механизированы. Так, для подъема и опускания верхнего валка использовался механизм, состоящий из электрического нажимного устройства и гидравлического уравновешивателя. Станы оборудовались механическими рольгангами, направляющими линейками, манипуляторами. Реверсирование валков осуществлялось изменением направления вращения главного двигателя. В 50-е годы XX в. были разработаны литейно-прокатные агрегаты, соединившие процессы непрерывного литья заготовок и прокатку. Они обеспечивали непрерывность процессов литья и прокатки благодаря использованию первичной теплоты слитка.

В СССР первая такая установка была создана в 1965 г. В ней жидкий металл подавался между валков снизу вверх. В другом способе формирование слитка происходило после окончания кристаллизации. В конце 50-х годов XX в. в СССР был разработан так называемый литейно-прокатный стан, совмещавший непрерывное литье и прокатку.

В 60-е годы прошлого века применение вычислительной техники произвело коренные преобразования в прокатке. ЭВМ осуществляет оперативный учет производства и слежения за прокатываемым металлом, управляет нажимным устройством и манипуляторными линейками, контролирует все производственные процессы.

Радио

Первым, кому удалось практически осуществить прием распространяющихся в эфире электромагнитных волн, был профессор анатомии в Болонье Луиджи Гальвани, описавший свои наблюдения в опубликованном в 1791 г. «Трактате о силах электричества при мышечном движении». Приемником волн в опытах Гальвани явилась лапка препарированной лягушки, мускулы которой во время прикосновения к ним скальпелем сокращались, если при этом из провода стоявшей неподалеку электростатической машины извлекалась искра.

Заинтересовавшись природой столь необычного явления, Гальвани старался понять, производит ли такое же действие, как и разряд электростатической машины, «естественная» электрическая искра, т. е. молния. Он поместил препарированную лягушку в банку, протянув проволоку от ее мускулов на крышу дома, а от нерва в колодец. Как только вблизи ударяла молния, наблюдались заметные сокращения мускулов лягушки.

В то время Гальвани не мог знать о существовании электромагнитных волн и не сделал из своих наблюдений открытия. Между тем в его опытах препарированная лягушка представляла собой довольно чувствительный индикатор происходившего в окружающем пространстве электромагнитного волнового процесса.

Прошло почти столетие, прежде чем люди дошли до правильного понимания загадочного наблюдения Гальвани.

После выдающихся теоретических работ английского ученого Максвелла, полностью подтвердивших мысль о существовании в природе электромагнитных волн, за экспериментальное изучение этого вопроса взялся молодой немецкий физик, профессор высшей технической школы в Карлсруэ Генрих Рудольф Герц. В статье «Об электродинамических волнах в воздухе и их отражении», опубликованной в 1888 г., этот ученый представил миру результаты своих исследований. Он впервые установил существование свободных электромагнитных волн и на опыте подтвердил справедливость всех теоретических выводов Максвелла. Герц не только нашел способ возбуждать электромагнитные волны («Лучи Герца») в пространстве, но изобрел и метод их обнаружения. В качестве приемника или индикатора волн Герц применил чрезвычайно простой прибор, названный «резонатором». В первом выполнении он представлял собой точную копию «вибратора»– устройства, примененного Герцем для излучения волн. Это был металлический прут с сосредоточенными на его концах емкостями (пластинами или шарами) и незначительным воздушным зазором – «искровым промежутком» в середине. Более чувствительным и удобным оказался, однако, резонатор другой формы, выполненный

в виде одного витка проволоки с небольшим искровым промежутком. Если длина проволоки и искровой промежуток резонатора соответствовали по своей величине проводникам вибратора, то наступало явление резонанса, вследствие которого в искровом промежутке резонатора начинали проскакивать электрические искры.

С помощью резонатора Герцу удавалось обнаруживать электромагнитные волны на расстоянии до 16 м от вибратора.

Схема передающей станции Герца была достаточно совершенной и уже после изобретения радио как средства связи почти без изменений просуществовала более десятка лет. Самым слабым местом в опытной установке Герца был приемник – весьма простой по конструкции «резонатор», чувствительность которого была безусловно недостаточной.

Создание более чувствительных индикаторов электромагнитных волн оказалось возможным лишь с изобретением волноуказателей иного, так называемого «когерерного» типа.

Уже давно физики заметили, что при электрическом искрении мельчайшие частицы вещества приобретали удивительную способность сцепления. В 1850 г. Гитар наблюдал, например, соединение частичек пыли в группы во время работы электростатической машины. Подобное же явление с угольным и графитным порошком пришлось наблюдать в 1866 г. английскому электротехнику Варлею. Серию опытов провел для выяснения этого явления в 1884 г. итальянский физик Кальцески-Онести, наполнявший стеклянную трубку металлическими опилками и наблюдавший их сцепление и увеличение проводимости в момент электростатического разряда или замыкания в электрической цепи. Однако впервые высказал идею использования металлических опилок для обнаружения электромагнитных волн французский ученый Эдуард Бранли. Готовясь к защите диссертации о проводимости металлических опилок, он для удобства измерений помещал опилки в стеклянную трубочку с выведенными по концам металлическими контактами. Во время опытов Бранли обнаружил, что опилки не всегда оказывают одинаковое сопротивление прохождению постоянного тока. При возникновении вблизи трубочки с опилками электромагнитных волн, например от искры, получаемой посредством катушки Румкорфа, сопротивление опилок быстро падало и восстанавливалось лишь после их легкого сотрясения. Он назвал свой прибор «радиокондуктором» и указал на возможность его применения для обнаружения лучей Герца. Вскоре прибором заинтересовался английский физик Оливер Лодж, включивший его в качестве индикатора электромагнитных волн в электрическую цепь, составленную из батареи и чувствительного гальванометра. В момент прохождения электромагнитных волн, создававшихся вибратором Герца, сопротивление радиокондуктора резко падало, и стрелка гальванометра отклонялась. В 1894 г. Лодж усовершенствовал свой прибор внесением в него механического молоточка-встряхивателя, возвращавшего опилки в нормальное непроводящее состояние. С помощью такого усовершенствованного радиокондуктора, названного Лоджем «когерером», электромагнитное излучение обнаруживалось на расстоянии до 40 ярдов (около 37 м) от вибратора. Таким образом, Лодж фактически имел под руками все приборы, необходимые для передачи сигналов без проводов и весьма близко подошел к практическому осуществлению радиотелеграфа.

Первым, кто высказал и претворил в жизнь идею телеграфирования без проводов, был преподаватель офицерского минного класса в Кронштадте Александр Степанович Попов.

В 1886 г. Попов решил подвергнуть тщательному исследованию явления короткого замыкания в проводах корабельного освещения и углубился в теорию искры. Узнав в 1888 г. об опытах Герца, Попов понял, какие большие практические возможности таит в себе это научное достижение. Он совершенствует применяемые Герцем приборы и продолжает исследования электромагнитных волн. Собственные представления в этой области Попов излагает в лекциях на тему «Новейшие исследования о соотношении между световыми и электрическими явлениями», сопровождая их экспериментами. Передающее устройство – вибратор Герца – было в тот момент уже достаточно разработано, поэтому Попов обратил особое внимание на усовершенствование приемной части. Ведь Лоджу и всем другим физикам, изучавшим распространение электромагнитных волн, приходилось каждый раз после приема очередного импульса электромагнитных колебаний встряхивать когерер для восстановления сопротивления опилок. Попов решил устранить этот существенный недостаток, сделав встряхивание когерера автоматическим. Он включил в цепь когерера и батареи телеграфное реле, которое при замыкании когерера срабатывало и, в свою очередь, включало цепь, состоящую из обычного электрического звонка. Молоточек звонка при движении ударял о когерер и встряхивал его. Свой приемник электромагнитных волн Попов сначала решил применить в метеорологии для изучения электрических разрядов в атмосфере и определения приближения грозы. Для регистрации отдельных разрядов изобретатель присоединил к приемнику пишущий прибор.

Поделиться:
Популярные книги

Эфир. Терра 13. #2

Скабер Артемий
2. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13. #2

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Решала

Иванов Дмитрий
10. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Решала

Назад в СССР: 1986 Книга 5

Гаусс Максим
5. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Назад в СССР: 1986 Книга 5

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Никто и звать никак

Ром Полина
Фантастика:
фэнтези
7.18
рейтинг книги
Никто и звать никак