Чтение онлайн

на главную

Жанры

Шрифт:

Турбины конструкции Лаваля получили название активных. Малая мощность и довольно большой расход пара (6–7 кг/л. с. ч.) в турбинах Лаваля ограничили их применение областью привода маломощных агрегатов с большим числом оборотов.

Быстроходная паровая турбина, не имеющая частей, совершающих возвратно-поступательное движение, способна была сконцентрировать в одном агрегате громадные мощности. Это свойство турбины могло проявиться только при ее объединении с генератором электрического тока.

В этом направлении вел работу английский инженер Ч. Парсонс. В 1884 г. он получил патент на многоступенчатую

реактивную турбину мощностью около 6 л. с. при 1000 об/мин. Для уравновешивания осевых усилий пар подводился в кольцевое пространство в средней части турбины, откуда через венцы подвижных и неподвижных лопаток он проходил к концам турбины. Размеры всех лопаток были почти одинаковыми, так что рост сечения для прохода пара практически отсутствовал. Такие турбины стали называться реактивными.

С 1885 по 1899 г. Парсонс строил паровые турбины разнообразных конструкций, постепенно вводя новые и новые улучшения, снижая расход пара, достигавшего в первых образцах громадной величины – около 60 кг/кВт-ч. К 1889 г. турбины Парсонса имели расход пара порядка 12 кг/кВт-ч. Эти турбины развивали мощность 60–75 кВт при 4800–5000 об/мин. В 1887 г. были впервые применены лабиринтовые уплотнения, использованные для разгрузочного поршня, с введением которого турбины начали строить однопроточными.

В Европе паровые турбины получили всеобщее признание в качестве двигателя электрогенераторов в 1899 г, когда в немецком городе Эльберфельд на электрической станции для привода генераторов трехфазного переменного тока впервые были применены турбины Парсонса мощностью 1000 кВт. Испытание Эльберфельдской станции было поручено лучшим немецким специалистам. Опубликованный ими в 1900 г. отчет установил неоспоримое преимущество паровой турбины перед другими типами двигателей, служивших для привода генераторов электрических станций. Турбины работали паром со средним давлением 10,5 атм, температурой 200 °C и показали расход пара 8–9 кг/кВт-ч при полной нагрузке агрегата.

В 1896 г. американский инженер Ч. Кертис ввел разбивку скоростного перепада на ряд ступеней скорости. При этом пар, покидавший сопло с большой скоростью, отдавал активному венцу только половину своей скоростной энергии. Для этого лопатки венца двигались не с половинной, а с четвертной скоростью по сравнению со скоростью струи пара. Вышедший из первого венца и отдавший ему половину своей скорости пар поворачивался без изменения его параметров на неподвижных лопатках направляющего аппарата и затем поступал на лопатки второго рабочего венца, которому он отдавал всю свою скорость, поскольку второй венец двигался в 2 раза медленнее струи пара. Таким образом, абсолютная скорость первого венца была равной абсолютной скорости второго венца, и их можно объединить на одном колесе-диске, получившем название диска Кертиса.

В 1900 г. на Всемирной выставке в Париже французский профессор О. Рато представил чертежи и детали паровой турбины мощностью 1 000 л. с. Она была сконструирована на основе принципа разбивки общего перепада давлений на отдельные активные ступени, в каждой из которых срабатывался лишь незначительный перепад давлений.

В 1903 г. инженер швейцарского завода «Эшер-Висс» Г. Целли усовершенствовал турбину Рато, уменьшив число активных ступеней давления с 16–20 до 7–10, что значительно

упростило и удешевило ее. Ряд крупных машиностроительных заводов образовал синдикат для постройки турбин по патенту Целли.

Паровые турбины продолжали развиваться, и в 1913 г. расход пара в турбине Парсонса мощностью 25 000 кВт, работавшей с паром давлением 14 атм при температуре 304 °C, составил 5 кг/кВт-ч.

Снижение расхода пара было во многом связано с примененным впервые в турбинах завода Парсонса углублением вакуума при помощи струйных элементов, ставших предшественниками современных пароструйных эжекторов.

Постепенно реактивная паровая турбина Парсонса уступила место более компактным активно-реактивным паровым турбинам, в которых реактивная часть высокого давления заменена одно– или двухвенчатым активным диском. Такая турбина проще и экономичнее, поскольку уменьшились потери на утечки пара через зазоры между лопатками.

Паровые турбины, устанавливаемые на теплоэлектростанциях, выпускают отработанный пар в конденсатор, где поддерживается вакуум. Конденсация отработанного пара сопровождается выделением тепла, ранее затраченным на испарение жидкости.

Паровые турбины теплоэлектростанций соединены с генераторами переменного электрического тока (турбогенераторами). В зависимости от назначения они делятся на базовые, несущие постоянную основную нагрузку, пиковые, работающие непродолжительное время для покрытия пиков нагрузки, и турбины для собственных нужд, которые обеспечивают потребность в электроэнергии самой электростанции.

Основное требование к базовым турбинам – экономичность на больших нагрузках, к пиковым – возможность быстрого пуска и включения в работу, к турбинам для собственных нужд – высокая надежность в работе.

Для покрытия пиковых нагрузок на электростанциях могут применяться газотурбинные установки. Воздух в них сжимается компрессором и подается в камеру сгорания, куда также вводится жидкое топливо или горючий газ. Нагретый сжатый газ вращает турбину. Часть энергии турбины идет на компрессор, сжимающий воздух, часть – электрогенератору.

Электродвигатель

В 1821 г., исследуя взаимодействие проводников с током и магнитов, Фарадей установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или вызывать вращение магнита вокруг проводника. Этот опыт доказал принципиальную возможность построения электродвигателя.

Возможность превращения электрической энергии в механическую была показана и во многих других экспериментах. Так, в книге П. Барлоу «Исследование магнитных притяжений», опубликованной в 1824 г., описывалось устройство, известное под названием «колеса Барлоу». Оно является одним из памятников предыстории развития электродвигателя. Колесо Барлоу по принципу действия представляло собой однополярную электрическую машину, работавшую в двигательном режиме: в результате взаимодействия магнитного поля постоянных магнитов и тока, проходящего через оба медных зубчатых колеса, сидящих на одной оси, колеса начинают быстро вращаться в одном и том же направлении. Барлоу установил, что перемена контактов или перемена положения полюсов магнитов немедленно вызывает перемену направления вращения колес.

Поделиться:
Популярные книги

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Идущий в тени 8

Амврелий Марк
8. Идущий в тени
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Идущий в тени 8

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

СД. Восемнадцатый том. Часть 1

Клеванский Кирилл Сергеевич
31. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.93
рейтинг книги
СД. Восемнадцатый том. Часть 1

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Назад в СССР: 1985 Книга 3

Гаусс Максим
3. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.50
рейтинг книги
Назад в СССР: 1985 Книга 3

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Огненный князь 3

Машуков Тимур
3. Багряный восход
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Огненный князь 3

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ