Чтение онлайн

на главную

Жанры

25 этюдов о шифрах

Ященко Валерий Владимирович

Шрифт:

Но существуют и другие последовательности, так называемые случайные. Для них, в отличие от детерминированных, вообще говоря, нельзя определить очередной член последовательности, зная предыдущие. Опишем простейший способ получения двоичной случайной последовательности.

Пусть мы подбрасываем «правильную» монету. В зависимости от того, как она падает, полагаем очередной член последовательности равным 0 (орел) или 1 (решка). Как показывает опыт, обычно нельзя угадать, как монета упадет в очередной раз. Однако, если подбрасывать монету достаточно долго, примерно в половине случаев выпадет орел, а в половине — решка. Говорят, что монета падает случайным образом, причем в каждом подбрасывании с одинаковой вероятностью ½ выпадает орел (0) или решка (1).

Однако

бывают ситуации («кривая монета»), когда орел и решка выпадают с разной вероятностью — p и q соответственно (pq). Отметим, что p+q=1! В случайной двоичной последовательности, полученной на основе подбрасывания «кривой монеты», p можно считать частотой появления нуля, а q — частотой появления единицы.

Для тех кто изучал пределы, уточним: если обозначить через S0(k) число нулей, а через S1(k) — число единиц среди k первых членов нашей последовательности, то тогда предел отношения S0(k)/k равен p и предел отношения S1(k)/k равен q при k стремящемся к бесконечности.

Контрольный вопрос. Пусть мы случайным образом подбрасываем монету, причём p=q=½ и первые сто членов соответствующей последовательности равны 1 (100 раз подряд выпала решка). Чему равно вероятность того, что 101-ым членом этой последовательности снова будет 1?

Правильный ответ на этот вопрос: ½. Так как q=½, а случайность нашей последовательности как раз и означает, что каждый очередной её член равен 1 с вероятностью q независимо от того, какими были предыдущие её члены.

Обычно последовательности, с которыми на практике приходится иметь дело, вообще говоря, не строго случайные (неслучайные). Изучение случайных и неслучайных двоичных последовательностей имеет важное значение для криптографии. Например, выявление закономерностей в шифрованных сообщениях очень полезно при вскрытии шифра (см. этюд 2.7). В этюде 2.5 вы также узнаете, что для построения абсолютно стойкого шифра необходимо уметь получать совершенно случайный ключ.

Задачам различения случайной и неслучайной последовательностей, а также выявления закономерностей в неслучайных последовательностях посвящено много исследований в различных областях математики. Так, например, один из основных разделов математической статистики — это проверка статистических гипотез, в котором, в частности, разрабатываются методы различения гипотез о природе и характеристиках наблюдаемых последовательностей. Другой пример — это активно изучаемый в современной теоретической криптографии гипотетический объект — псевдослучайный генератор. При изучении этого объекта используются многочисленные результаты теории сложности алгоритмов и вычислений. Говоря неформально, псевдослучайный генератор вырабатывает такие последовательности, которые трудно отличить от случайных и из которых трудно извлечь закономерности. Строгие определения необходимых понятий выходят за рамки нашей книги.

Близким по духу, но более простым и хорошо известным, особенно для программистов, является такой объект, как датчик случайных чисел. Это — некоторое устройство или программа, которая вырабатывает псевдослучайные последовательности. Псевдослучайные последовательности в некоторых ситуациях считают неотличимыми от случайных, причем для разных ситуаций и задач подбирают подходящие датчики. Чем более сильные требования накладываются на случайность вырабатываемых последовательностей, тем более сложным является соответствующий датчик случайных чисел. Многие шифрмашины можно считать датчиками случайных чисел, удовлетворяющими очень высоким требованиям на качество вырабатываемых последовательностей.

Опишем, например, один простейший датчик, предложенный в 1949 году Д.Х. Лемером и в дальнейшем получивший

название линейного конгруэнтного метода. Для заданного начального числа a0 он вырабатывает бесконечную последовательность натуральных чисел {ak} по следующему рекуррентному закону:

ak=d+ak−1(modN).

Здесь параметры датчика d, , N — некоторые целые числа. Запись a=b(modN), вообще говоря, означает, что ab делится на число N; в данном случае в качестве ak берется остаток от деления d+ak−1 на N.

Поскольку все члены последовательности {ak} — неотрицательные целые числа, не превосходящие N−1, то среди них найдутся два одинаковых, скажем ai и ai+t. Тогда, как легко видеть, ai=ai+t для ki, т.е. последовательность — периодическая с длиной периода t. Конечно, периодичность не вполне согласуется с нашими представлениями о случайности, но, оказывается, можно подбирать такие параметры датчика, чтобы период был достаточно большим и у последовательности были многие признаки случайности.

Следует отметить, что «хорошей во всех отношениях случайной последовательности» практически не существует: насколько «хорошей» является случайная последовательность, зависит от ее назначения.

Подумайте сами:

1. Докажите следующее утверждение: вероятность того, что при k подбрасываниях кривой монеты раз выпадет орёл, равняется:

2. Придумайте такие числа d, и N, чтобы N было не слишком маленьким и длина периода последовательности, полученной линейным конгруэнтным методом, была близка к N.

3. Придумайте какой-нибудь свой датчик случайных чисел.

2.3. Что такое алгоритм и его сложность

Под алгоритмом, если говорить неформально, можно понимать четко описанную последовательность действий, приводящую к определенному результату.

Понятие алгоритма очень долго оставалось интуитивным понятием. Только в 30-е годы XX века в работах выдающихся математиков Д. Гильберта, А. Черча, С. Клини, Э. Поста и А. Тьюринга были предложены формальные определения алгоритма на основе понятия рекурсивной функции и на основе описания алгоритмического процесса. Тем самым формировалась теория алгоритмов — новое направление в математике, которое стало впоследствии теоретической основой развития вычислительной техники. В настоящее время теория алгоритмов бурно развивается, многие ее понятия проясняются и уточняются (доказуемость, разрешимость, эффективность и др.).

Поделиться:
Популярные книги

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Лисья нора

Сакавич Нора
1. Всё ради игры
Фантастика:
боевая фантастика
8.80
рейтинг книги
Лисья нора