Чтение онлайн

на главную

Жанры

25 этюдов о шифрах

Ященко Валерий Владимирович

Шрифт:

Числа p, q и d будем считать секретными и обозначим секрет K={p, q, d}. Числа n и e будем считать общедоступными. Множества открытых сообщений X и шифрованных сообщений Y будем считать равными: X = Y = {1, 2, ... , n−1}.

Функцию FK : XY

определим равенством: FK(x) = xe(modn).

Свойство а) односторонней функции с секретом выполнено для FK очевидным образом. Проверим свойство в). Для этого просто укажем, как при известном K инвертировать функцию FK: решением уравнения FK(x) = y будет x = yd(modn). Подробное доказательство этого факта оставляем читателю, приведем лишь необходимые выкладки без комментариев:

de = φ(n)∙m + 1

(xe)d(modn) = xφ(n)∙m+1(modn) = (xφ(n))mx(modn) = (1)mx(modn) = x.

Свойство б) для функции FK строго не доказано. Пока общепризнано, что для инвертирования FK необходимо разложить n на множители, а, как указывалось в этюде 3.4, задача факторизации целых чисел относится к трудным математическим задачам.

Таким образом, описанную функцию FK можно считать кандидатом на звание односторонней функции с секретом. Система RSA строится с помощью этой функции так, как рассказано в этюде 3.2.

В газете «Известия» за 29 апреля 1994 г. под заголовком «Сверхсекретный шифр разгадан за 17 лет» появилось следующее сообщение: «Когда в 1977 году математики Рональд Ривест, Ади Шамир и Леонард Адлеман зашифровали фразу из нескольких слов, используя комбинацию из 129 цифр, они утверждали, что на разгадку понадобятся триллионы лет. Однако ключ к самому сложному в мире шифру «РСА-129» (RSA) был найден за 17 лет... Разгадка шифра за такой относительно короткий срок имеет огромное значение для государственных организаций и предпринимателей, которые пользуются аналогичными длинными цифровыми кодами для защиты секретных сведений в своих компьютерных базах данных...» Пока это сообщение не подтверждено научными публикациями, ясно лишь, что речь идет о том, что удалось разложить на множители то 129-значное число, которое было использовано в 1977 году. Но уже давно в реальных системах RSA используются более длинные числа.

Подумайте сами:

1. Разберите примеры работы системы RSA, приведённые на стр. 241–243 книги М. Гарднера «От мозаик Пенроуза к надёжным шрифтам».

3.6. Открытое распределение ключей

Кроме принципа построения криптосистемы с открытым ключом, Диффи и Хеллмэн в той же работе предложили еще одну новую идею — открытое распределение ключей. Они задались вопросом: можно ли организовать такую процедуру взаимодействия абонентов A и B по открытым каналам связи, чтобы решить следующие задачи:

1) вначале у A и B нет никакой общей секретной информации, но в конце процедуры такая общая секретная информация (общий ключ) у A и B появляется, т.е. вырабатывается;

2) противник, который перехватывает все передачи информации и знает, что хотят получить A и B, тем не менее не может восстановить выработанный общий ключ A и B.

Диффи и Хеллмэн предложили решать эти задачи с помощью функции F(x) = αx(modp), где p — большое простое число, x — произвольное натуральное число, α — некоторый примитивный элемент поля GF(p).

Примитивным называется такой элемент a из GF(p), что каждый элемент поля, за исключением нуля, может быть представлен в виде степени a. Можно доказать, хотя это и не просто, что примитивный элемент всегда существует.

Общепризнано, что инвертирование функции αx(modp), т.е. дискретное логарифмирование, является трудной математической задачей (см. этюд 3.4).

Сама процедура или, как принято говорить, протокол выработки общего ключа описывается следующим образом.

Числа p и α считаются общедоступными.

Абоненты A и B независимо друг от друга случайно выбирают по одному натуральному числу — скажем x(A) и x(B). Эти элементы они держат в секрете. Далее каждый из них вычисляет новый элемент:

y(A)=αx(A)(modp), y(B)=αx(B)(modp).

Потом они обмениваются этими элементами по каналу связи. Теперь абонент A, получив y(B) и зная свой секретный элемент x(A), вычисляет новый элемент

Поделиться:
Популярные книги

Темный Патриарх Светлого Рода 6

Лисицин Евгений
6. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 6

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

"Колхоз: Назад в СССР". Компиляция. Книги 1-9

Барчук Павел
Колхоз!
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Колхоз: Назад в СССР. Компиляция. Книги 1-9

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Мимик!

Северный Лис
1. Сбой Системы!
Фантастика:
боевая фантастика
5.40
рейтинг книги
Мимик!

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

(Бес) Предел

Юнина Наталья
Любовные романы:
современные любовные романы
6.75
рейтинг книги
(Бес) Предел

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант