40 задач на Python
Шрифт:
```python
# Функция для проверки, что цифры в числе уникальны
def are_digits_unique(num):
return len(set(num)) == len(num)
# Функция для решения числового ребуса
def solve_rebus(rebus):
# Извлекаем уникальные буквы из ребуса
unique_chars = set(char for char in rebus if char.isalpha)
# Генерируем все возможные комбинации цифр для уникальных букв
for digits in itertools.permutations('0123456789', len(unique_chars)):
digits_str = ''.join(digits)
#
if digits_str[0] != '0' and are_digits_unique(digits_str):
# Заменяем буквы на соответствующие цифры в ребусе
rebus_with_digits = rebus.translate(str.maketrans({char: digit for char, digit in zip(unique_chars, digits_str)}))
# Разделяем ребус на левую и правую части
left, right = rebus_with_digits.split('=')
# Проверяем, удовлетворяет ли решение ребусу
if eval(left) == eval(right):
return rebus_with_digits
return None
# Пример использования
rebus = "SEND + MORE = MONEY"
solution = solve_rebus(rebus)
if solution:
print(solution)
else:
print("Решение не найдено.")
```
Этот код генерирует все возможные комбинации цифр для уникальных букв в ребусе, заменяет буквы на соответствующие цифры в ребусе и проверяет, удовлетворяет ли полученное выражение условиям ребуса. Если находится решение, оно выводится на экран.
Объяснения к коду:
1. Функция `are_digits_unique`:
– Эта функция принимает строку `num`, представляющую число в виде строки.
– Внутри функции используется `set`, чтобы преобразовать строку в множество уникальных символов.
– Функция возвращает `True`, если количество символов в строке `num` совпадает с количеством уникальных символов, что означает, что все цифры в числе уникальны. В противном случае функция возвращает `False`.
2. Функция `solve_rebus`:
– Эта функция принимает строку `rebus`, представляющую собой числовой ребус.
– Она начинается с извлечения уникальных букв из ребуса с помощью функции `set` и условия `char.isalpha`. Таким образом, `unique_chars` содержит все уникальные буквы, встречающиеся в ребусе.
– Затем функция перебирает все возможные перестановки цифр от 0 до 9 с помощью функции `itertools.permutations`, указывая количество цифр, соответствующее количеству уникальных букв в ребусе.
– Для каждой перестановки цифр функция проверяет, что ведущий ноль отсутствует, вызывая `digits_str[0] != '0'`, и что все цифры уникальны, вызывая функцию `are_digits_unique`.
– Если эти условия выполнены, функция заменяет буквы на соответствующие цифры в ребусе с помощью метода `str.translate` и словаря, созданного с помощью `zip`.
– Затем ребус разбивается на левую и правую части с помощью метода `split('=')`.
– После этого проверяется, является ли результат левой части равенства (`eval(left)`) равным результату правой части (`eval(right)`).
– Если это так, то функция возвращает ребус с замененными буквами на цифры. Если не найдено ни одного решения, функция возвращает `None`.
3. Пример использования:
– В примере использования задается ребус `"SEND + MORE = MONEY"`.
– Функция `solve_rebus` вызывается с этим ребусом.
– Если найдено решение, оно выводится на экран. Если решение не найдено, выводится сообщение "Решение не найдено."
Описание задачи: Магический квадрат – это квадратная матрица размером (n \times n), заполненная числами от 1 до (n^2) таким образом, что суммы чисел в каждой строке, каждом столбце и обеих диагоналях равны.
Ваша задача – написать программу, которая проверяет, является ли данная матрица магическим квадратом.
Формат ввода:
– В первой строке задается одно целое число (n) ((1 leq n leq 100)) – размерность матрицы.
– В следующих (n) строках содержится по (n) целых чисел, разделенных пробелами, – элементы матрицы.
Формат вывода:
– Выведите `YES`, если матрица является магическим квадратом.
– Выведите `NO` в противном случае.
Пример 1:
Ввод:
3
8 1 6
3 5 7
4 9 2
Вывод: YES
Пример 2:
Ввод:
3
2 7 6
9 5 1
4 3 8
Вывод: NO
Пример 3:
Ввод:
2
1 2
3 4
Вывод: NO
Решение:
1. Считать размерность матрицы (n) и её элементы.
2. Проверить, что все числа от 1 до (n^2) присутствуют в матрице.
3. Вычислить сумму первой строки (или любого другого ряда) как эталонную сумму.
4. Проверить, что суммы всех строк, столбцов и диагоналей равны эталонной сумме.
5. Вывести результат проверки.
Пример кода на Python:
```python
def is_magic_square(matrix):
n = len(matrix)
# Проверка, что все числа от 1 до n^2 присутствуют
all_numbers = set(range(1, n*n + 1))
numbers_in_matrix = set(num for row in matrix for num in row)
if all_numbers != numbers_in_matrix:
return False
# Вычисление эталонной суммы
magic_sum = sum(matrix[0])
# Проверка строк
for row in matrix:
if sum(row) != magic_sum: