Чтение онлайн

на главную

Жанры

А ну-ка, догадайся!
Шрифт:

Курица? Нет, ибо она должна была бы вылупиться из яйца. Яйцо?

Нет, ибо его должна была бы снести курица.

Старый вопрос о том, что появилось на свет раньше— яйцо или курица, по-видимому, можно считать наиболее известным примером того, что логики называют бесконечным спуском. Концентрат овсяной каши в США обычно продают в коробках, на которых изображен человек, держащий в руках коробку овсяной каши, на которой изображен… и т. д., как в бесконечной последовательности вложенных друг в друга китайских резных шаров из слоновой кости.

В парикмахерской, где зеркала расставлены друг против друга, вы можете увидеть начальный отрезок

бесконечного спуска отражений.

Писатели неоднократно использовали бесконечный спуск в фантастических произведениях. Один из персонажей романа Олдоса Хаксли «Контрапункт» Филип Кварлз пишет роман о романисте, который пишет роман о романисте, который и т. д. Бесконечные спуски встречаются в романе Андре Жида «Фальшивомонетчики», в пьесе Э. Э. Каммингса «Он» и в таких рассказах, как, например, «Записная книжка» Нормана Мэйлера, в котором молодой писатель решает написать рассказ, который написал Мэйлер.

Математик Август Де Морган написал шуточное стихотворение, первые четыре строки которого перефразируют более раннее шуточное четверостишие Джонатана Свифта:

Блох больших кусают блошки, Блошек тех — малютки-крошки, Нет конца тем паразитам, Как говорят, ad infinitum. Блоха большая в свой черед Кусает ту, на ком живет, Та — блох потолще, шире в талии, И нет конца им, и так далее…

Возможно, что на два давно возникших вопроса, связанных с бесконечным спуском, мы никогда не получим ответа. Первый вопрос относится к бесконечному спуску в сторону бесконечности: включает ли наша расширяющаяся Вселенная в себя «все на свете» или является составной частью некой большей, пока не известной нам системы? Второй вопрос относится к бесконечному спуску в противоположном направлении: является ли электрон неделимой частицей или обладает какой-то внутренней структурой, то есть состоит ли из еще меньших частиц? Физики считают, что многие элементарные частицы представляют собой различные комбинации кварков. Существуют ли еще меньшие частицы, из которых состоят кварки?

Некоторые физики полагают, что шкала структур простирается неограниченно далеко в обе стороны. Вселенная Вселенных напоминает вложенные один в другую гигантские китайские резные шары, среди которых нет ни самого большого, ни самого маленького, подобно тому как не существует самой малой дроби и самого большого целого положительного числа.

Парадокс Платона и Сократа

Поразмыслим над тем, что здесь нарисовано. Критянин говорит о критянах. Предложение, утверждающее нечто о себе. Пуговица, на которой написано о пуговице.

Все эти утверждения содержат ссылку на себя. Может быть, в этом причина всех трудностей?

Нет. Еще древние греки знали, что исключение ссылок на себя не избавляет от парадоксов. Вот один диалог, подтверждающий это.

Платон.Следующее высказывание Сократа будет ложным.

Сократ.То, что сказал Платон, истинно.

< image l:href="#" />

Логики упростили парадокс Платона и Сократа, сведя его к двум утверждениям, которые вы видите на рисунке. Какое бы значение истинности вы ни приписали любому из них, оно будет противоречить другому утверждению. Ни одно из утверждений не содержит ссылки на себя, но, взятые вместе, эти два утверждения воспроизводят парадокс лжеца.

Этот вариант парадокса лжеца, широко обсуждавшийся средневековыми логиками, интересен тем, что приводит к важному выводу: источник затруднений в парадоксах с неопределенным значением истинности кроется не в ссылке на себя, а лежит глубже. Если утверждение Аистинно, то утверждение Вложно, а коль скоро утверждение Вложно, то утверждение Адолжно быть ложным. Но если Аложно, то Вистинно, а коль скоро Вистинно, то Адолжно быть истинным.

Мы вернулись к исходной позиции и можем все повторить с самого начала, подобно двум полицейским из кинокомедии, крадущимся друг за другом вдоль стен огромного здания. Ни одно из утверждений Аи Вничего не говорит о себе, но стоит взять их вместе, как одно утверждение изменяет значение истинности другого утверждения на противоположное, поэтому ни об одном из них мы не можем сказать, истинно оно или ложно.

Своих друзей вы можете развлечь следующим вариантом парадокса Платона и Сократа, предложенным английским математиком П. Э. Б. Журденом, — так называемой карточкой Журдена.

Напишите на одной стороне чистой карточки

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ИСТИННО

а на обратной стороне —

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ЛОЖНО.

Многие люди долго вертят в руках карточку Журдена то так, то эдак, прежде чем осознают, что оказались вовлеченными в бесконечный спуск, в котором каждое утверждение попеременно становится то истинным, то ложным.

Алиса и Черный Король

Парадокс Платона и Сократа включает в себя два бесконечных спуска, подобно парадоксу Алисы и Черного Короля из сказки Льюиса Кэрролла «Алиса в Зазеркалье».

Алиса.Черный Король мне снится. Но он спит и видит во сне, будто я сплю и вижу во сне, что он спит и видит меня во сне…

Видно, я никогда не доберусь до конца.

Эпизод, в котором Алиса встречает Черного Короля, происходит в четвертой главе сказки Льюиса Кэрролла «Алиса в Зазеркалье». Король спит и, по словам Твидлди, видит во сне Алису. «Ты ему просто снишься, — говорит Твидлди возмущенной Алисе. — Если этот вот Король вдруг проснется, ты сразу же — фьють! — потухнешь, как свеча!»

Но диалог Алисы и Твидлди снится Алисе. Кто же кому снится: Король Алисе или Алиса Королю?

Что явь и что сон?

Такого рода «сны во сне» приводят к глубоким философским проблемам реальности. «Если бы мы не облекали их в юмористическую форму, — заметил однажды Бертран Рассел, — то нам пришлось бы признать, что они слишком болезненны».

В парадоксе с курицей и яйцом бесконечная последовательность кур и яиц уходит назад по времени, но в парадоксе Алисы и Черного Короля бесконечный спуск совершается по кругу. Наглядной иллюстрацией парадокса бесконечного спуска, совершаемого по кругу, может служить известный рисунок Морица Эшера «Рисующие руки».

Поделиться:
Популярные книги

Хозяйка лавандовой долины

Скор Элен
2. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Хозяйка лавандовой долины

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Ратник

Ланцов Михаил Алексеевич
3. Помещик
Фантастика:
альтернативная история
7.11
рейтинг книги
Ратник

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень