Чтение онлайн

на главную

Жанры

А ну-ка, догадайся!
Шрифт:

Дуглас Хофштадтер в своей книге «Гёдель, Эшер, Бах: вечное золотое переплетение» называет такие парадоксы «странными петлями». В его книге приведено множество поразительных примеров странных петель в физике, математике, изобразительном искусстве, литературе и философии.

Крокодил и младенец

Греческие философы любили рассказывать притчу о крокодиле, выхватившем младенца из рук матери.

Крокодил. Съем ли я твоего младенца? Если ты ответишь правильно, я верну

тебе его целым и невредимым.

Мать.О горе мне! Ты съешь моего мальчика.

Крокодил (в смущении).Как мне поступить? Если я отдам тебе младенца, то твой ответ будет неверным. Следовательно, я должен съесть малютку. Отличная идея! Я не отдам тебе его!

Мать.Но ты должен вернуть мне его. Ведь если ты съешь моего мальчика, значит, я ответила правильно и ты должен отдать мне его.

Несчастный крокодил настолько растерялся, что упустил мальчишку. Мать подхватила ненаглядное чадо и была такова.

Крокодил.Жаль! Вот если бы она сказала, что я отдам ей ребенка, то у меня было бы чем полакомиться на обед.

Крокодил оказался перед неразрешимой проблемой: он должен съесть младенца и в то же время вернуть его матери.

Мать оказалась очень умной женщиной. Ведь если бы она сказала, что крокодил собирается вернуть ей младенца, то крокодил мог бы действительно вернуть его или съесть, не впадая при этом в противоречие.

Если бы крокодил вернул младенца матери, то ее утверждение стало бы истинным и крокодил сдержал бы свое слово. С другой стороны, если крокодил достаточно коварен, то он мог бы съесть младенца. Тогда утверждение матери стало бы ложным, и крокодил мог бы считать себя свободным от данного им обещания вернуть матери младенца.

Парадокс Дон Кихота

В романе Сервантеса «Дон Кихот» рассказывается об одном острове, на котором действует удивительный закон. Каждого, проходящего по мосту через реку, судьи подвергают опросу.

Судья.Куда и зачем ты идешь? Тех, кто скажет правду, судьи пропускают, а тех, кто солжет, без всякого снисхождения отправляют на стоящую тут же виселицу и казнят.

Однажды некий человек заявил под присягой, что идет затем, чтобы его вздернули на виселице.

Судьи пришли в не меньшее замешательство, чем крокодил. Если они не повесят этого человека, то это будет означать, что он солгал, и его надлежит повесить.

Если же они повесят его, то он не солгал и его необходимо пропустить.

Чтобы разрешить свои сомнения, судьи отправили человека к губернатору. После долгих размышлений губернатор объявил свое решение.

Губернатор.Любое мое решение нарушило бы закон, поэтому я предпочитаю быть милосердным. Отпустите этого человека. Пусть идет себе с миром!

Парадокс с повешением приведен в главе 51 второй книги романа Сервантеса «Дон Кихот». Слуга Дон Кихота Санчо Панса становится губернатором острова и при вступлении на свой высокий пост клянется соблюдать все законы. Владелец одного поместья на острове издал закон, по которому всякий, проходящий по некоему мосту, должен объявить под присягой, куда и зачем он следует. Того, кто скажет правду, по закону надлежит пропускать, а того, кто солжет, — отправлять на стоящую неподалеку виселицу. Когда к Санчо Пансо приводят человека, утверждающего, будто он пришел за тем, чтобы быть повешенным, новоявленный губернатор решает казусное дело, сообразуясь с милосердием и здравым смыслом.

Суть парадокса Дон Кихота, обладающего несомненным сходством с парадоксом крокодила и младенца, несколько затемняет неоднозначность утверждения, высказанного тем человеком, который перешел мост. О чем идет речь: о намерении или о будущем событии? Если речь идет о намерении быть повешенным, то человек мог сказать правду (то есть действительно мог хотеть, чтобы его повесили). В этом случае судьи не могли бы отправить его на виселицу, и никакого противоречия при этом бы не возникало.

Если высказанное утверждение понимать во втором смысле, то любое решение судей противоречит закону.

Парадокс брадобрея

Знаменитый парадокс брадобрея был предложен Бертраном Расселом. Прочитайте внимательно объявление, вывешенное владельцем парикмахерской. Кто бреет брадобрея?

Если брадобрей бреется сам, то он принадлежит множеству тех жителей города, кто бреется сам.

Но в объявлении утверждается, что наш брадобрей никогда не бреет тех, кто входит в это множество. Следовательно, наш брадобрей не может брить самого себя.

Если же брадобрея бреет кто-нибудь другой, то он принадлежит к числу тех, кто не бреется сам.

Но в объявлении сказано, что он бреет всех, кто не бреется сам.

Следовательно, никто другой не может брить нашего брадобрея.

Похоже, что его не может брить никто!

Бертран Рассел предложил парадокс брадобрея, чтобы облечь в более наглядную форму знаменитый парадокс, обнаруженный им в теории множеств. Некие математические конструкции приводят к множествам, которые включают себя в качестве одного из своих членов. Например, множество, содержащее все, что не является яблоком, само не является яблоком и, следовательно, должно содержать себя в качестве одного из членов. Рассмотрим теперь множество всех множеств, не содержащих себя в качестве одного из членов. Содержит ли оно себя? Как бы вы ни ответили на этот вопрос, вам не удастся избежать противоречия.

С этим парадоксом связан один из наиболее драматических моментов в истории логики. Знаменитый немецкий логик Готлоб Фреге завершил второй том своих «Оснований арифметики», над которым работал всю жизнь. В этом фундаментальном труде Фреге изложил непротиворечивую теорию множеств, которая могла бы послужить основанием для всей математики. Рукопись находилась уже в типографии, когда Фреге получил от Рассела письмо (дело происходило в 1902 г.), в котором Рассел сообщал об открытом им парадоксе. Теория множеств, развитая Фреге, допускала образование множества всех множеств, которые не содержат себя. Но, как явствовало из письма Рассела, это, казалось бы, не таившее никаких опасностей множество было внутренне противоречивым. Фреге не оставалось ничего другого, как дописать к своему труду краткое приложение, которое начиналось словами:

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Титан империи 6

Артемов Александр Александрович
6. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 6

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага