Чтение онлайн

на главную

Жанры

А ну-ка, догадайся!
Шрифт:

Джордж.Художник продал свою картину за 100 и приобрел снова за 80 долларов. Следовательно, его чистая прибыл составила 20 долларов. Вторую продажу можно не принимать во внимание, так как 90 долларов — примерно столько, сколько стоила картина на самом деле.

Джерри в своих расчетах как бы принимал во внимание соображения и Денниса, и Джорджа.

Джерри.Продав картину за 100 и приобретя ее снова за 80 долларов, художник

получил 20 долларов чистой прибыли. Еще 10 долларов он заработал, купив картину за 80 и Продав ее мне за 90 долларов. Следовательно, полная прибыль художника составила 30 долларов.

Какова в действительности чистая прибыль от продажи картины; 10, 20 или 30 долларов?

Эта нехитрая, но несколько запутанная задача обычно вызывает оживленные споры. И лишь по прошествии некоторого времени начинаешь сознавать, что задача не вполне определена и поэтому всякий из приведенных ответов столь же хорош (или столь же плох), как и любой другой.

Определить, "какова в действительности чистая прибыть от продажи картины", невозможно, так как в условиях задачи ничего не говорится о «себестоимости» картины — о том, во что обошлось (в денежном выражении) ее создание художнику. Оставим в стороне время, затраченное художником на создание картины, и предположим, что Деннис уплатил за все материалы (подрамник, холст и краски) 20 долларов.

После трех продаж он получил за картину 110 долларов. Если чистую прибыль определить как разность между суммой денег, вырученной от продажи картины, и стоимостью израсходованных материалов, то чистая прибыль составит 90 долларов.

Поскольку нам не известно, сколько художник уплатил за материалы (мы лишь предположили, что за подрамник, холст и краски он уплатил 20 долларов), вычислить прибыль невозможно. Эта задача лишь кажется арифметической; в действительности же здесь все упирается в вопрос, что понимать под реальной прибылью. Аналогичный парадокс возникает в связи со старым вопросом о том, раздается ли какой-нибудь звук при падении дерева в глухом лесу, если поблизости нет ушей, чтобы его слышать. Ответ на вопрос может быть и утвердительным, и отрицательным в зависимости от того, что понимать под словом «звук».

Два парадокса, которыми открывается глава 3 («Геометрия»), могут служить новыми, не менее занимательными примерами проблем, возникающих в связи с различными толкованиями одного слова.

Демографический взрыв

Кому из нас не приходилось слышать о том, как быстро увеличивается численность населения земного шара?

Президент Лиги борцов против контроля за рождаемостью мистер Нинни не согласен с общим мнением. Он считает, что численность населения земного шара убывает и что вскоре у каждого будет больше пространства, чем нужно.

Рассуждает мистер Нинни следующим образом.

М-р Нинни.У каждого из нас двое родителей. Но у каждого из родителей также по двое родителей, поэтому у нас по две бабушки и по два дедушки, по четыре прабабушки и по четыре прадедушки. С каждым поколением в глубь истории число предков у каждого из нас удваивается.

M-p Hинни.Если вы вернетесь вспять на 20 поколений в эпоху средневековья, то насчитаете 1048 576 предков! И столько же предков у каждого из ныне живущих людей. Следовательно, численность населения земного шара стала в миллион раз больше, чем теперь!

Мистер Нинни, несомненно, заблуждается. Но где ошибка в его рассуждениях?

Рассуждения Нинни правильны, если принять следующие два предположения:

1) на генеалогическом дереве каждого ныне живущего человека ни один предок не появляется более одного раза;

2) ни один человек в прошлом и настоящем не фигурирует более чем на одном генеалогическом дереве.

Ни одно из этих предположений не выполняется во всех, без исключения, случаях. Если у некой супружеской четы пятеро детей и у каждого из детей по пять детей, то наша супружеская чета будет прародителями (бабушкой и дедушкой) на 25 генеалогических деревьях. Кроме того, на любом дереве, если вернуться назад на достаточно большое число поколений, ветви будут пересекаться из-за браков между дальними родственниками.

В своих рассуждениях Нинни (и в этом состоит его ошибка) не учитывает ни того, что одни и те же люди могут фигурировать в различных генеалогических деревьях, ни того, что множества предков каждого из ныне живущих людей имеют массивное пересечение. «В демографическом взрыве», о котором толкует Нинни, миллионы людей сосчитаны миллионы раз!

Многие с удивлением узнают, как быстро возрастают члены последовательности, у которой каждый следующий член вдвое больше предыдущего. Если один человек вздумает уплатить другому в первый день 1 доллар, во второй — 2 доллара, в третий — 4 доллара и т. д., то, как ни трудно в это поверить, на двадцатый день размер выплаты составит более миллиона долларов!

Можно ли быстро сосчитать сумму первых двадцати членов последовательности, в которой каждый следующий член вдвое больше предыдущего? Оказывается можно: для этого достаточно удвоить последний (двадцатый) член и вычесть из полученного результата единицу. В нашем, случае 20-й член равен 1048576, а сумма первых 20 членов равна

(2 х 1048576) — 1 = 2097151.

Этот трюк применим к любой частичной сумме последовательностей, каждый член которой (начиная со второго) вдвое больше предыдущего. Существует весьма простое доказательство того, что это правило работает без «осечек». Предоставляем нашим читателям самостоятельно найти это доказательство.

Вездесущая девятка

У числа 9 немало загадочных свойств. Знаете ли бы, например, что оно незримо присутствует в дате рождения любой знаменитости?

Взять хотя бы Джорджа Вашингтона. Он родился 22 февраля 1732 г. Запишем дату его рождения как одно число: 2221732, переставим цифры в любом порядке и из большего числа вычтем меньшее.

Сложив все цифры разности, мы получим 36; а 3 плюс 6 равно 9!

Проделайте то же самое с датами рождения Джона Кеннеди (29 мая 1917 г.), Шарля де Голля (22 ноября 1890 г.) или любой другой знаменитости, и вы всегда получите 9. Существует ли некая таинственная связь между девяткой и датами рождения знаменитостей?

Скрыта ли девятка в дате вашего рождения?

Поделиться:
Популярные книги

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Подчинись мне

Сова Анастасия
1. Абрамовы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Подчинись мне