«Ага!» и его секреты
Шрифт:
Количество открытий и изобретений удваивается каждые десять лет. Причем темп развития науки все убыстряется. Подсчитано, что за последние пятнадцать лет сделано столько же научных открытий, сколько за всю предшествующую историю науки! Так не правильнее ли было бы назвать наш век эпохой открытий?
В конце XIX века на всем земном шаре научными исследованиями занимались едва пятьдесят тысяч человек. К середине XX столетия их было уже четыреста тысяч. Сейчас во всем мире ученых, активно двигающих науку вперед, свыше двух миллионов.
Если теперешние темпы даже не ускорятся, а хотя бы останутся на таком же уровне (а наука развивается по геометрической прогрессии!),
И как всякой индустрии, ей нужна соответствующая техника. Такими современными механизмами, способными автоматизировать умственный труд, и служат вычислительные машины, которые могут не просто решать отдельные задачи, большей частью уже давно решенные людьми, а быть настоящими действенными помощниками человека в высокоинтеллектуальной работе.
Это по силам машинам, работающим по эвристическим алгоритмам, машинам, созданным, чтобы делать открытия. Известный ученый, директор Киевского института кибернетики Виктор Михайлович Глушков считает, что речь должна идти о комплексной автоматизации таких высокоинтеллектуальных творческих процессов, как развитие науки и техники.
«Уже сегодня существуют системы, — говорит он, — позволяющие автоматически производить сложные физические эксперименты с одновременной обработкой полученных экспериментальных данных в виде, готовом для публикации. Ведутся эксперименты с программами, выводящими сложные логические следствия из имеющихся в распоряжении исследователя фактов. Планируются работы по созданию программ, строящих теорию, которая простейшим образом объединила бы сложный экспериментальный материал. Высказаны первые идеи о путях построения программы, которые формулировали бы новые интересные идеи в математике… Уже сегодня электронная машина в нашем вычислительном центре может вывести любые теоремы алгебры так называемых вещественных полиномов, в том числе и те, которые не выведены человеком».
Как скоро настанет пора такой «кибернетизации научного творчества»? Академик Глушков уверен, что очень скоро. Сразу же после «кибернетической десятилетки» в экономике, с которой, по его мнению, надо начинать массовое внедрение кибернетики в нашем народном хозяйстве.
На помощь ученым придут электронные ньютоны, умеющие «думать» не только очень быстро и логически стройно, но и пусть несколько приблизительно, с некоторой долей вероятности, зато с помощью так называемых «скачков ума», внезапных откровений, интуитивных догадок, и составляющих суть творческого мышления.
Рациональная в своей основе, наука движется вперед не за счет только простого рассуждения, а главным образом благодаря способности ума освобождаться от оков железной логики — мыслить широко, остроумно, порой парадоксально, забегать далеко вперед, воображать иногда то, что еще не получило подтверждения фактами.
Мысль человека всегда основана на чувствах, она всегда эмоциональна, хотя эта сторона деятельности ума не бросается в глаза и потому гораздо меньше изучена. Тем более это относится к мыслительной работе ученых и вообще творческих людей. Кто-то остроумно сказал, что эмоции — «закулисный дирижер» творчества. И дирижер этот играет не второстепенную, а главную роль в поисках нового.
Когда эмоциями снабдят машины, они смогут «думать» еще более творчески. Не обязательно им впадать в экстаз, вдохновенно «щелкать цифрами». Не знаю, доведется ли им переживать минуты вдохновения, творческого подъема, но без воображения и интуиции (их электронных моделей, разумеется) им не стать подлинными ньютонами. Тем более что им придется работать на науку XX столетия — науку «безумных идей» и фантастических открытий.
Весь XIX век да и начало нашего ушли в значительной степени на собирание фактов — подготовку фундамента колоссального рывка вперед, который знаменовался такими невероятными, с точки зрения здравого смысла, открытиями, как теория относительности или антимир. Сами физики назвали эти теории «безумными» в хорошем смысле. И несмотря на уже обнаруженные парадоксы, по признанию многих ученых, современная наука нуждается в новых «сумасшедших» теориях.
Этого не смогут сделать трезво рассуждающие умы. XX веку нужны ученые-фантазеры, ученые-мечтатели, люди гибкой и смелой мысли, способные оторваться от канонов старых теорий, вырваться за пределы прежнего знания. И если вы — будущие ученые, инженеры, художники — хотите стать участниками великих деяний своего времени, учитесь думать широко, эмоционально, творчески. Помните: у вас есть теперь конкурент и ваш ученый друг — машина.
Как не дать себя обогнать электронным ньютонам? Видимо, прежде всего иначе учиться и учить, что, пожалуй, даже важнее. Когда у нас появятся автоматические библиографы, переводчики, справочники, не будет необходимости разыскивать немыслимое количество фактов и загружать ими свою память.
Нам надо сосредоточить внимание на другом — изучать не летопись науки, а ее принципы, суть составляющих ее открытий, чтобы на примере физики или химии познакомиться с методами познания и затем овладевать новыми, более совершенными способами обобщения и анализа, разнообразными приемами мышления. А для этого еще со школьной скамьи не просто набираться знаний, но и учиться думать.
Собственно, первому мы школьников учим, а вот второму — умению думать — предоставляем учиться самим. Кто поспособней, интуитивно доходит до правильной технологии мышления. Менее способные ученики нередко уходят из школы, унося багаж пассивных знаний, а умения активно пользоваться ими так и не приобретают.
Как же научить школьников сложному искусству мышления?
Ввести в число школьных предметов логику, представляющую собой как раз описание технологии мышления? Но во многих школах преподают логику, а существо дела не меняется. Ученики выучивают, какие формы выражения мыслей правильные, какие неверные, но лучше мыслить от этого не начинают. Не хватает опять того же — умения пользоваться приобретенными навыками.
Выходит, надо не просто знакомить школьников с описанием разных форм мышления, а вырабатывать у них способность думать: «делать» рассуждение, строить умозаключение и т. д. Или, как сказали бы кибернетики, выявить алгоритмы умственной работы и обучить им школьников.
Такие опыты обучения науке думания на основе выводов эвристики ставятся.
Прежде всего попробовали разложить мысленно процесс решения геометрических задач на отдельные операции — один из очень эффективных алгоритмов, как мы знаем, — и обучать им школьников восьмых классов.
Результаты оказались очень хорошими. Школьники, изучавшие геометрию в течение двух с половиной лет и так и не научившиеся решать задачи, после непродолжительного обучения специальным алгоритмам вдруг проявили способности к математике. Теперь они запросто решали большинство задач, которые до этого представляли для них камень преткновения. А тот, кто и раньше хорошо справлялся с этими задачами, применяя вновь разработанные правила, стал соображать еще лучше.