Алло, робот
Шрифт:
Если будет создан язык-посредник, то машинный перевод с любого и на любой язык мира возможен. Однако все процедуры с кодированием, перфокартами и т. п. остаются и занимают, конечно, немало времени.
Если бы машина умела сама читать! Тогда задача была бы гораздо проще... Возможно ли обучить машину чтению?
Еще в начале нынешнего века был дан ответ: «да, возможно». Изобретатель д’Альба еще в 1904 году построил «Оптофон» — машину для чтения печатного текста. В наши дни читающие устройства, достигшие, конечно, гораздо большего совершенства, чем «Оптофон», начинают выполнять роль «глаза» и для электронных вычислительных машин.
Каждая
«Черное — белое», «да —- нет», «есть ток — нет тока»... «нуль — единица». В который раз мы встречаемся с универсальной арифметикой электронных вычислительных машин! Просматривая все квадратики, из которых состоит буква, фотоэлемент превращает изображение буквы в набор нулей и единиц. Буква теперь «понятна» машине — ведь она стала двоичным числом!
Вот как происходит считывание буквы по методу телевизионной развертки: фотоэлемент просматривает букву сверху вниз, превращая ее в последовательность электрических сигналов.
Каждая буква — двоичное число. Допустим, «а» — это число 10001010111, «б» —01110011000, и т. д. Если мы пользуемся одним и тем же типографским шрифтом, то наши числа-буквы будут однозначны.
Ну, а если взять другой шрифт? Если набрать буквы «а» не обычным шрифтом, а курсивом? Очертания буквы изменятся. Значит, изменится и число. Как же быть тогда? Очевидно, нужно вложить в «память» машины сведения о том, что не только число 10001010111, но и число 11001010111 («а» курсивное) также является буквой «а».
Типографских вариантов букв не так уж много. Печатные буквы стандартны, в них нет никаких «вариантов почерка». Но как быть с рукописными текстами? Ведь в них сотни и тысячи различных по начертанию букв «а», «б» и др. И тем не менее применять машины для чтения рукописных букв необходимо. И прежде всего, в банковском деле. В 1960 году в обращении находилось более 50 миллиардов банковских чеков. В годовом обороте каждый документ обрабатывается примерно 10 раз. Вот и посчитайте, сколько времени нужно затратить на обработку чеков!
В настоящее время машины овладели техникой чтения банковских документов. Ежегодно они обрабатывают миллионы чеков. Успехи машины объясняются тем, что читать ей нужно всего лишь 10 различных знаков-цифр. К тому же они пишутся на чеках разборчиво — как-никак денежный документ!
Помогают и специальные «магнитные чернила». Они сделаны из смеси красителя и тонко помолотого магнитного порошка. Запись такими «чернилами» может читаться машиной без помощи фотоэлемента.
Вначале документ проходит под намагничивающей головкой. Потом — под несколькими «читающими головками», расположенными подобно головкам обычного магнитофона. Знаками, написанными «магнитными чернилами», возбуждаются электрические импульсы. Величина импульсов зависит от формы знака. Сочетание коротких и сильных импульсов дает двоичное число, и автомат может читать чек.
Благодаря таким «магнитным чернилам» в одном из американских
ОБРАЗЫ И БУКВЫ
Но и «магнитные чернила» не помогут, если писать неразборчивым почерком. Как научить машину читать любой рукописный текст? Эта проблема является частью более общей задачи — машинного распознавания образов.
Все течет, все изменяется, говорил великий греческий философ Гераклит. В самом деле, действительность, окружающая нас, вечно меняется. Нельзя войти дважды в одну и ту же реку, нельзя увидеть дважды одну и ту же вещь: что-то в ней меняется каждую секунду. Повторяемости впечатлений не существует. И тем не менее мы считаем реку рекой, вещь вещью.
Почему?
Да потому, что наш мозг, и не только мозг, но и глаз, совершают постоянную работу по абстрагированию, обобщению потока впечатлений из внешнего мира.
Органы чувств человека получают такое количество информаций, что мозг не может обработать ее полностью. Он вынужден перерабатывать первичные восприятия в понятия и образы. Мы видим сотни самых различных собак: дворняжек, сеттеров, бульдогов, гаке; рыжих, пегих, белых, бурых, маленьких, коротконогих, гигантских, голенастых. И все же, несмотря на такое множество пород, мастей и размеров, мы всегда отличим собаку от кошки.
Благодаря образному зрению мы можем узнавать предметы, которых раньше никогда не видели, но которые относятся к уже известным нам образам. Распознавание образов позволяет человеку не только экономить свою память, но и использовать предыдущий опыт. Если бы человек не умел распознавать образы, он мог бы читать только почерки, которые видел раньше. Чтобы понимать незнакомые почерки, их нужно было бы специально изучать. И знание других почерков никак не помогало бы осваивать новый.
Человек распознает образы на основании своего опыта и, быть может, переданных ему по наследству навыков. А как научить образному зрению машину?
Задача была бы не слишком трудной, если бы мы могли описать все возможные образы. Например, все варианты буквы «а» в ее различных начертаниях. Но вряд ли кто сумеет сделать это. Слишком много вариантов всех возможных почерков. К тому же нам достаточно увидеть несколько букв «а», чтобы в дальнейшем безошибочно «угадывать» эту букву в любом шрифте и почерке. Как же это делается?
«Я бы в ноги поклонился тому физиологу, который сможет математически четко объяснить, как человек безошибочно отличает собаку от кошки», — говорил один из крупных советских кибернетиков. И за шутливой фразой скрыто серьезное содержание. Вся трудность распознавания образов заключается в том, чтобы найти содержательные признаки, с помощью которых человек отличает букву «а» от буквы «б», один образ от другого. Вот перед нами четыре буквы: