Чтение онлайн

на главную

Жанры

Аналитика: методология, технология и организация информационно-аналитической работы

Конотопов Павел Юрьевич

Шрифт:

По существу, мы сформировали систему элементов формального описания предметной области, отраженной в полисиллогизме. Завершим пример, используя подход Б.А. Кулика (для прочтения символической записи достаточно припомнить школьные годы)…

Итак, С С T CI R\ S CI R (знак С символизирует отношение включения множеств). — Именно так будет выглядеть запись базовых суждений сорита. По школьным годам помнится, что операция инверсии знаков у обеих частей неравенства приводит к интересным результатам (превращению знака «больше» в знак «меньше» и т. д.). В нашем

случае такая аналогия вполне уместна: операция отрицания поставленная перед каждым из терминов приведет к инверсии отношения включения, то есть получим:

S с= С; R^T; R<^S. То есть, «Все разумные люди не являются малыми детьми» и т. п. Далее получим:

C^S,S^R =>С <^R Т (z R,R cz S =>Т oeS S^R,

RoeT ^SoeT

СсГ;

ГсС.

RoeS,SoeC ^KcC

Итого, получаем: «Все малые дети не укрощают крокодилов» и «Все, кто укрощает крокодилов, не являются малыми детьми». Расшифровать прочие утверждения читатели могут самостоятельно.

Логические модели широко используются для описания систем знаний в различных предметных областях, при этом уровень формализации описания в таких моделях существенно выше чем в логико-лингвистических. Достаточно заметить, что одному высказыванию (когнитивному элементу) логико-лингвистической модели, как правило, соответствует несколько высказываний логической модели.

Зачастую, наряду с классическим логическим формализмом, в таких моделях используется формальные средства теории множеств и теории графов, служащие для расширения возможностей по описанию и представлению отношений в логических моделях. Здесь прослеживается их сходство с логико — лингвистическими моделями. Так же, как и логико-лингвистические модели, логические модели позволяют осуществлять качественный анализ, однако, будучи дополнены формальными средствами и методами других разделов математики (что делается достаточно легко, поскольку логика является метаязыком как для естественного языка, так и для искусственных языков), логические модели позволяют осуществлять и строгий численный анализ.

Наиболее широкое распространение логические модели получили в области построения систем искусственного интеллекта, где они используются в качестве основы для производства логического вывода из системы посылок, зафиксированных в базе знаний, в ответ на внешний запрос.

Ограничения, связанные со спецификой предметной области (нечеткость и неполнота экспертных знаний) привели к тому, что в последние годы в отрасли построения систем искусственного интеллекта приобрели особую популярность квазиаксиоматические логические системы (подход, развиваемый отечественным ученым Д.А. Поспеловым). Такие логические системы заведомо неполны и для них не выполняется полный комплекс требований, характерных для классических (аксиоматических) систем. Более того — для большинства логических высказываний, образующих такую систему, задается область определения, в пределах которой эти высказывания сохраняют свою значимость, а все множество высказываний, на основе которых осуществляется анализ, делится на общезначимые высказывания (справедливые для всей модели) и высказывания, имеющие значимость лишь в рамках локальной системы аксиом.

Те же причины (неполнота и нечеткость экспертных знаний) сделали популярными такие направления логики, как многозначные логики (первые работы в этой области принадлежат польским ученым Я. Лукасевичу и А. Тарскому 1920-30-е годы), вероятностные логики и нечеткие логики (Fuzzy Logic — автор теории Л. Заде — 1960-е годы). Этот класс логик активно используется при синтезе логических моделей для систем искусственного интеллекта, предназначенных для ситуационного анализа.

Поскольку большинство знаний и понятий, используемых человеком, нечетко, Л. Заде предложил для представления таких знаний математическую теорию нечетких множеств, позволяющую оперировать такими «интересными» множествами, как множество спелых яблок или множество исправных автомобилей. На таких вот интересных множествах были определены операции нечеткой логики.

Системы, использующие модели на базе нечеткой логики разрабатываются специально для решения плохо определенных задач и задач с использованием неполной и недостоверной информации. Внедрение аппарата нечетких логик в технологии создания экспертных систем привело к созданию нечетких экспертных систем (Fuzzy Expert Systems).

Нечеткие логики стали особенно популярны в последние годы, когда Министерство Обороны США всерьез приступило к финансированию исследований в этой области. Сейчас в мире наблюдается всплеск интереса к аналитическим программным продуктам, созданных с применением методов нечетких логик и нечетких логических моделей. Правда, логическими эти модели назвать уже трудно — в них широко используются многозначные вероятностные отношения меры и принадлежности взамен традиционного математического аппарата бинарной логики. Нечеткая логика позволяет решать широкий класс задач, не поддающихся строгой формализации — методы нечеткой логики используются в системах управления сложными техническими комплексами, функционирующими в непредсказуемых условиях (летательными аппаратами, системами наведения высокоточного оружия и т. д.).

Многие зарубежные аналитические технологии, в силу действия экспортных ограничений, на российские рынки не поставляются, а инструментальные средства для самостоятельной разработки приложений являются ноу-хау фирм производителей — экономически выгоднее поставлять готовые приложения, чем создавать себе армию конкурентов (тем более в странах с «дешевыми» мозгами).

По существу логические модели представляют собой последний этап формализации, на котором в качестве элементов высказывания еще могут выступать понятия, сформулированные на языке человеческого общения. Но как мы видели в логические методы уже активно вмешиваются элементы формальных систем, речь о которых пойдет далее.

2.6 Статистические, теоретико-вероятностные модели

Статистические и теоретико-вероятностные методы составляют методологическую основу одноименного вида моделирования. На этом уровне формализации модели речь о вскрытии закона, обеспечивающего устранение неопределенности при принятии решения, пока еще не идет, но существует некоторый массив наблюдений за данной системой или ее аналогом, позволяющих сделать некие выводы относительно прошлого/текущего/будущего состояния системы, основываясь на гипотезе об инвариантности ее поведения.

Как всегда, сформулируем определение. Статистическая или теоретико-вероятностная модель (стохастическая модель) — это модель, в которой обеспечивается учет влияния случайных факторов в процессе функционирования системы, основанная на применении статистической или теоретико-вероятностной методологии по отношению к повторяющимся феноменам. Данная модель оперирует количественными критериями при оценке повторяющихся явлений и позволяет учитывать их нелинейность, динамику, случайные возмущения за счет выдвижения на основе анализа результатов наблюдений гипотез о характере распределения некоторых случайных величин, сказывающихся на поведении системы.

По существу, теоретико-вероятностные и статистические модели отличаются уровнем неопределенности знаний о моделируемой системе, существующей на момент синтеза модели. В случае, когда представления о системе носят, скорее, теоретический характер и основываются исключительно на гипотезах о характере системы и возмущающих воздействий, не подкрепленных результатами наблюдений, теоретико-вероятностная модель является единственно возможной. Когда же на этапе синтеза модели уже существуют данные, полученные опытным путем, появляется возможность подкрепления гипотез за счет их статистической обработки. Это становится очевидным, если рассмотреть соотношение между методами математической статистики и теории вероятностей. Математическая статистика — это наука, изучающая методы вскрытия закономерностей, свойственных большим совокупностям однородных объектов или событий, на основании их выборочного обследования (либо большим массивам данных, полученных в результате наблюдения за одним и тем же объектом на протяжении достаточно протяженного интервала времени). Теория же вероятностей изучает количественные закономерности, которым следуют случайные явления, если эти явления определяются событиями известной вероятности. Соответственно, математическая статистика является связующим звеном между теорией вероятностей и явлениями реального мира, поскольку позволяет сформулировать оценки вероятности тех или иных событий на основе анализа статистических данных.

Поделиться:
Популярные книги

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Сердце Дракона. Том 19. Часть 1

Клеванский Кирилл Сергеевич
19. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.52
рейтинг книги
Сердце Дракона. Том 19. Часть 1

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Проиграем?

Юнина Наталья
Любовные романы:
современные любовные романы
6.33
рейтинг книги
Проиграем?

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода