Апология математика
Шрифт:
29
Я закончу тем, что приведу обзор моих заключений, но изложу их в более личной манере. Я уже говорил в начале, что всякий, кто занимается апологией своего дела, обнаруживает, что он занимается апологией самого себя, и моя апология жизни профессионального математика, если разобраться, является попыткой оправдать мою собственную жизнь. Поэтому заключительный раздел моей "Апологии" по существу представляет собой фрагмент моей автобиографии.
Сколько я себя помню, мне никогда не хотелось стать кем-нибудь ещё, кроме как математиком. Думаю, всегда было ясно, что мои индивидуальные способности лежат именно в области математики, и мне никогда не приходило в голову поставить под сомнение вердикт старших. Не помню, чтобы в детстве я испытывал страсть к математике, и представления, какие могли сложиться у меня в ту пору, о карьере математика, были далеки от возвышенных и благородных. Я размышлял о математике как о серии экзаменов и стипендий: мне хотелось одолеть других мальчишек, и мне казалось, что в математике я смогу осуществить свою мечту наиболее определённо.
Мне было около пятнадцати лет, когда (весьма
20
«Аланом Сент-Обином» была миссис Фрэнсиз Маршалл, жена Мэттью Маршалла.
Прибыв в Кембридж, я тотчас же узнал, что членство в колледже подразумевало "оригинальную работу", но прошло немало времени, прежде чем у меня сформировалось сколько-нибудь ясное представление о моём самостоятельном исследовании. Разумеется, в школе я, как всякий будущий математик, обнаружил, что нередко могу решать задачи гораздо лучше, чем мой учитель, и даже в Кембридже мне удавалось решать задачи лучше некоторых преподавателей, хотя это, естественно, происходило гораздо реже, чем в школе. Но в действительности, даже когда прошёл Трайпос, я оставался полным невеждой в тех самых проблемах, которым посвятил всю остальную жизнь. О математике я по-прежнему думал как по существу "состязательной" науке. Впервые мне открыл глаза профессор Ляв, у которого я проучился несколько семестров. У него же я получил первое серьёзное представление о математическом анализе. Но более всего я обязан ему за то, что он, будучи по существу прикладным математиком, посоветовал мне прочитать знаменитый "Курс математического анализа" Жордана. Никогда не забуду изумление, которое охватило меня при чтении этой замечательной книги, ставшей первым источником вдохновения для столь многих математиков моего поколения. Прочитав её, я впервые понял, что такое математика. С тех пор я на свой собственный лад стал настоящим ("реальным") математиком со здоровыми математическими амбициями и подлинной страстью к математике.
За следующие десять лет я написал много работ, но очень мало из них имели хотя бы какое-то значение: лишь четыре или пять из них я всё ещё могу вспомнить с некоторым удовлетворением. Настоящий перелом в моей карьере наступил дважды: через десять или двенадцать лет - в 1911 году, когда я начал продолжительное сотрудничество с Литлвудом, и в 1913 году, когда я открыл Рамануджана. С тех пор все мои лучшие работы были связаны с их работами, и не подлежит сомнению, что моё сотрудничество с ними стало решающим событием моей жизни. Я и сейчас говорю себе, когда мне приходится выслушивать помпезных докучливых людей: "А всё-таки мне удалось сделать одну вещь, которую ни за что не удастся сделать вам: я сотрудничал с Литлвудом и Рамануджаном на равных". Именно им, Литлвуду и Рамануджану, я обязан необычно поздней зрелостью: мой расцвет как математика произошёл, когда мне было слегка за сорок и я был профессором в Оксфорде. Затем наступила фаза всё большего угасания - обычная судьба престарелых людей, в особенности престарелых математиков. В шестьдесят лет математик может оставаться вполне компетентным, но бесполезно ожидать от него оригинальных идей.
Ныне жизнь моя, если иметь в виду то, ради чего стоит жить, закончена, и я не могу сделать ничего такого, что бы сколь-нибудь значительно увеличило или уменьшило её ценность. Очень трудно быть беспристрастным, но я считаю, что моя жизнь прожита "успешно". Я был достаточно вознаграждён - не меньше, чем причитается человеку моих способностей. Я занимал ряд приличных и "престижных" постов. Не имел никаких хлопот, связанных с утомительной университетской рутиной. Я ненавидел "преподавание", и мне пришлось очень мало им заниматься. То, что выпало на мою долю по части преподавания, сводилось почти исключительно к руководству исследованиями. Я любил читать лекции и читал много лекций чрезвычайно способным студентам, и у меня всегда оставалось много свободного времени для собственных работ, которые служили великим и неизбывным счастьем моей жизни. Оказалось, что я легко могу работать с другими, и мне выпало основательно посотрудничать с двумя исключительными математиками. Это позволило мне внести в математику гораздо больший вклад, чем я мог бы рассчитывать в разумных пределах. Как и у любого другого математика, у меня были разочарования, но ни одно из них не было слишком серьёзным и не сделало меня особенно несчастным. Если бы мне предложили прожить такую же жизнь, не лучше и не хуже, когда мне было бы двадцать лет, то я согласился бы без малейших колебаний.
Было бы абсурдно полагать, будто я мог бы "добиться большего". Я не обладаю ни лингвистическими ни артистическими способностями и не питаю ни малейшего интереса к экспериментальной науке. Я мог бы быть сносным философом, но не очень оригинальным. Полагаю, что из меня мог бы получиться хороший адвокат, но журналистика - единственная профессия вне академической жизни, в которой я реально мог бы иметь шанс на успех. Нет сомнения в том, что я правильно выбрал профессию математика, если судить по критерию, который принято называть успехом.
Итак, если я хотел разумно комфортной и счастливой жизни, то мой выбор был правильным. Но адвокаты, биржевые брокеры и букмекеры нередко тоже ведут комфортную и счастливую жизнь, и что-то не видно, чтобы мир становился богаче от их существования. Есть ли какой-нибудь смысл в моём утверждении, что моя жизнь была менее тщетной, чем их? И снова я вижу лишь один возможный ответ: возможно, есть, но если это и так, то лишь по одной причине.
Я никогда не делал ничего "полезного". Ни одно моё открытие не способствовало ни прямо, ни косвенно увеличению или уменьшению добра или зла и не оказало ни малейшего влияния на благоустроенность мира. Я помогал воспитывать других математиков, но математиков такого же рода, как и я сам, и их работы, во всяком случае в той части, в которой я помогал им, были столь же бесполезны, как и мои собственные работы. По любым практическим меркам ценность моей математической жизни равна нулю, а вне математики она, так или иначе, тривиальна. У меня есть лишь один шанс избежать вердикта полной тривиальности - если будет признано, что я создал нечто такое, что заслуживает быть созданным. А в том, что мне удалось создать нечто такое, нет сомнения: вопрос заключается лишь в том, насколько ценно то, что я создал.
Смысл моей жизни или жизни кого-нибудь ещё, кто был математиком в том же смысле, в каком был математиком я, заключается в следующем: я внёс нечто своё в сокровищницу знания и помог другим сделать то же, и эти "нечто" обладали ценностью, которая отличалась только величиной, но никак не сущностью, от творений великих математиков или любых других художников, больших и малых, которые оставили после себя нерукотворные памятники.
Примечание
Профессор Броуд и д-р Сноу заметили в беседе со мной, что если я хочу продемонстрировать точный баланс между добром и злом, приносимым наукой, мне не следует чрезмерно сосредотачивать внимание на влиянии науки на войну и, что даже если я размышляю об этом влиянии, мне не следует забывать о том, что вмешательство науки влечёт за собой множество очень важных последствий помимо чисто разрушительных. Так (если начать с последнего пункта), я должен напомнить, что (а) организация всего населения на войну возможна только научными методами; (б) наука значительно увеличивает силу пропаганды, используемой почти исключительно во зло; и (в) наука сделала "нейтральность" почти невозможной или бессмысленной, в результате чего напрочь исчезли "острова мира", из которых после войны могли бы распространиться здравый смысл и восстановление. Всё это, разумеется, свидетельствует против науки. С другой стороны, если довести ситуацию до предела, то вряд ли возможно всерьёз считать, что добро, творимое наукой, не перевешивает полностью творимое ею же зло. Например, если бы каждая война уносила десять миллионов человеческих жизней, то суммарный эффект науки всё же сводился бы к увеличению средней продолжительности жизни. Короче говоря, §28 моей "Апологии" излишне "сентиментален".
Не стану оспаривать обоснованность этой критики, но по причинам, изложенным мной в предисловии, я счёл невозможным учесть замечания профессора Броуда и д-ра Сноу в тексте и ограничиваюсь этим признанием.
Д-р Сноу сделал также интересное замечание по поводу §8. Даже если мы согласимся с тем, что "Архимеда будут помнить и тогда, когда Эсхила забудут", то не является ли математическая слава немного слишком "анонимной" для того, чтобы быть полностью удовлетворительной? Исходя только из произведений, мы могли бы составить непротиворечивый портрет личности Эсхила (и в ещё большой степени Шекспира или Толстого), в то время как Архимед и Евдокс и после тщательного изучения их трудов остались бы только именами.
Более красочное замечание по этому поводу принадлежит мистеру Дж. М. Ломасу. Как-то раз мы с ним проходили мимо нельсоновской колонны[ 125 ] на Трафальгар-сквер[ 126 ], он спросил: "Если бы вы были статуей на колонне, воздвигнутой на одной из площадей Лондона, что бы вы предпочли: чтобы та колонна была такой высокой, что статуя скрылась бы из виду, или достаточно низкой, чтобы можно было бы различить детали статуи?" Я предпочёл бы первую альтернативу, д-р Сноу, по-видимому, предпочёл бы вторую.
125
Колонна Нальсона - памятник адмиралу Горацио Нельсону (1758-1805) на Трафальгарской площади.
126
Трафальгарская площадь - площадь в центре Лондона, названная в честь победы английского флота под командованием адмирала Нельсона над франко-испанской армадой у мыса Трафальгар в 1805 г.