Чтение онлайн

на главную - закладки

Жанры

Апология математики (сборник статей)
Шрифт:

Андрей Николаевич сам неоднократно рассказывал своим ученикам о конце своей «карьеры историка». Когда работа была доложена им в семинаре, руководитель семинара профессор С. В. Бахрушин, одобрив результаты, заметил, однако, что выводы молодого исследователя не могут претендовать на окончательность, так как «в исторической науке каждый вывод должен быть снабжён несколькими доказательствами» (!). Впоследствии, рассказывая об этом, Андрей Николаевич добавлял: «И я решил уйти в науку, в которой для окончательного вывода достаточно одного доказательства». История потеряла гениального исследователя, математика приобрела его.

Двадцать шестого апреля (по старому стилю, а по новому – 7 мая) 1755 г. состоялось торжественное открытие Московского университета. После молебна были сказаны четыре речи. Первая из них – и притом единственная прозвучавшая на русском языке – называлась «О пользе учреждения Московского университета». Произнёс её Антон Алексеевич Барсов [1 (12) марта 1730, Москва – 21 декабря 1791 (1 января 1792), там же]. Неудивительно, что в 1761 г. он был назначен профессором (в современных терминах – заведующим) на кафедру красноречия; вступление

в эту должность ознаменовалось его публичной лекцией «О употреблении красноречия в Российской империи», произнесённой 31 января (11 февраля) 1761 г. Чем же занимался Барсов до того? Преподавал математику – именно с Барсова, в феврале 1755 г. специально для этой цели переведённого из Петербурга в Москву, и началось преподавание математики в Московском университете! Впоследствии Барсов прославился трудами по русской грамматике; ему же принадлежит и ряд предложений по русской орфографии, тогда отвергнутых и принятых лишь в XX в. К сожалению, портрет А. А. Барсова не сохранился.

Ещё раньше, в 1727 г., знаменитый математик Даниил Бернулли, работавший в то время в Петербургской академии наук, обратил внимание на студента этой академии Василия Евдокимовича Ададурова [15 (26) марта 1709, Новгород – 5 (16) ноября 1780, Москва]. В письме к известному математику Христиану Гольдбаху от 28 мая 1728 г. Бернулли отмечает значительные математические способности молодого человека и сообщает о сделанном Ададуровым открытии: сумма кубов последовательных натуральных чисел равна квадрату суммы их первых степеней: 13 + 23 +… + п= (1 + 2 +… + п)2. Математические заслуги Ададурова засвидетельствованы включением статьи о нём (с портретом, выполненным в технике силуэта) в биографический раздел однотомного «Математического энциклопедического словаря» (М., 1988). А из статьи «Ададуров» в первом томе «Нового энциклопедического словаря» Брокгауза и Ефрона мы узнаём, что Ададуровым написано несколько сочинений по русскому языку и, более того, что «в 1744 г. ему было поручено преподавать русский язык принцессе Софии, т. е. будущей императрице Екатерине II». Последующие изыскания (они были проведены братом автора этих строк Борисом Андреевичем Успенским) показали, что Ададуров является автором первой русской грамматики на русском же языке, составление каковой следует рассматривать как большое событие. Ведь важнейший этап в языковом сознании носителей какого бы то ни было языка – появление первой грамматики этого языка на том же самом языке; этот этап сравним с осознанием того, что кажущаяся пустота вокруг нас заполнена воздухом. Прибавим ещё, что с 1762 по 1778 г. Ададуров был куратором Московского университета – вторым после основавшего университет И. И. Шувалова.

Итак, даже если согласиться с традиционной классификацией наук, отсюда ещё не следует с неизбежностью аналогичная классификация учёных или учащихся. Приведённые факты показывают, что математик и гуманитарий способны уживаться в одном лице.

Здесь предвидятся два возражения. Прежде всего нам справедливо укажут, что Ададуров, Барсов, Колмогоров были выдающимися личностями, в то время как любые рекомендации должны быть рассчитаны на массовую аудиторию. На это мы ответим, что образцом для подражания – даже массового подражания – как раз и должны быть выдающиеся личности и что примеры Ададурова, Барсова, Колмогорова призваны вдохновлять. Далее нам укажут, опять-таки справедливо, что отнюдь не всем гуманитариям и отнюдь не всем математикам суждено заниматься научной работой, это и невозможно, и не д'oлжно. Ну что ж, ответим мы, примеры из жизни больших учёных выбраны просто потому, что история нам их сохранила; сочетать же математический и гуманитарный подход к окружающему миру стоит даже тем гуманитариям и математикам, которые не собираются посвятить себя высокой науке, и это вполне посильная для них задача.

III

По всеобщему признанию, литература и искусство являются частью человеческой культуры. Ценность же математики, как правило, видят в её практических приложениях. Но наличие практических приложений не должно препятствовать тому, чтобы и математика рассматривалась как часть человеческой культуры. Да и сами эти приложения, если брать древнейшие из них – такие, скажем, как использование египетского треугольника (т. е. треугольника со сторонами 3, 4, 5) для построения прямого угла, – также принадлежат общекультурной сокровищнице человечества. (Чьей сокровищнице принадлежит шестигранная форма пчелиных сот, обеспечивающая максимальную вместимость камеры при минимальном расходе воска на строительство её стен, – этот вопрос мы оставляем читателю для размышления.) В Древнем Египте, чтобы получить прямой угол, столь необходимый при строительстве пирамид и храмов, поступали следующим образом. Верёвку делили на 12 равных частей; точки деления, служащие границами между частями, помечали, а концы верёвки связывали. Затем за верёвку брались три человека, удерживая её в трёх точках, отстоящих друг от друга на 3, 4 и 5 частей деления. Далее верёвку натягивали до предела – так, чтобы получился треугольник. По теореме, обратной к теореме Пифагора, треугольник оказывался прямоугольным, причём тот человек, который стоял между частью длины 3 и частью длины 4, оказывался в вершине прямого угла этого треугольника.

Раздел математики, сейчас называемый математическим анализом, в старые годы был известен под названием «дифференциальное и интегральное исчисление». Отнюдь не всем обязательно знать точное определение таких основных понятий этого раздела, как производная и интеграл. Однако каждому образованному человеку желательно иметь представление о производном числе как о мгновенной

скорости (а также как об угловом коэффициенте касательной) и об определённом интеграле как о площади (а также как о величине пройденного пути). Поучительно знать и о знаменитых математических проблемах (разумеется, тех из них, которые имеют общедоступные формулировки) – решённых (как проблема Ферма и проблема четырёх красок [8] ), ждущих решения (как проблема близнецов [9] ) и тех, у которых решения заведомо отсутствуют (из числа задач на геометрическое построение и простейших задач на отыскание алгоритмов). Ясное понимание несуществования чего-либо – чисел ли с заданными свойствами, или способов построения, или алгоритмов – создаёт особый дискурс, который можно было бы назвать культурой невозможного. И культура невозможного, и предпринимаемые математикой попытки познания бесконечного значительно расширяют горизонты мышления.

8

Проблема четырёх красок заключается в требовании доказать следующий факт: любую мыслимую карту можно так раскрасить в четыре цвета, чтобы страны, имеющие общую границу, всегда были окрашены в разные цвета. Проблема ждала решения более ста лет.

9

Близнецами называются такие два простых числа, разность между которыми равна двум: например, 3 и 5, 5 и 7, 11 и 13, 17 и 19, 29 и 31. Неизвестно, конечным или бесконечным является количество близнецовых пар; в требовании дать ответ на этот вопрос и состоит проблема близнецов. (Напомним, что простым называется такое большее единицы целое число, которое делится без остатка только на само себя и на единицу.)

Всё это, ломая традиционное восприятие математики как сухой цифири, создаёт образ живой области знания, причём живой в двух смыслах: во-первых, связанной с жизнью; во-вторых, развивающейся, т. е. продолжающей активно жить. Всякому любознательному человеку такая область знания должна быть интересна. Вообще, образованность предполагает ведь знакомство не только с тем, что непосредственно используется в профессиональной деятельности, но и с человеческой культурой как таковой, чьей неотъемлемой частью – повторим это ещё раз – является математика.

Здесь возможен следующий упрёк. Хотя в названии настоящего очерка политкорректно говорится о преодолении барьера, изложение явно уклоняется в сторону пропаганды «математического». Автор болезненно относится к такому упрёку и спешит оправдаться. Дело в том, что гуманитарная культура не нуждается в пропаганде: она не только повсеместно признана непременной частью культуры вообще, но часто отождествляется с последней. Отличать ямб от хорея, понимать смысл выражения «всевышней волею Зевеса», а заодно и знать, кто такой Зевес, – все (или по крайней мере большинство) согласны в том, что подобные знания и умения входят в общеобязательный культурный багаж. Включение же в этот багаж чего-то математического в качестве обязательной составной части многим может показаться непривычным и потому нуждается в лоббировании.

IV

Однако образование состоит не только в расширении круга знаний. В неменьшей степени оно подразумевает расширение навыков мышления. Математик и гуманитарий обладают различными стилями мышления, и ознакомление с иным стилем обогащает и того и другого. Скажем, изучение широко распространённого в математике аксиоматического метода, дозволяющего использовать в рассуждениях только ту информацию, которая явно записана в аксиомах, прививает привычку к строгому мышлению. А знакомство со свойствами бесконечных множеств развивает воображение. Потребуются ли когда-нибудь, скажем, историку аксиоматический метод или бесконечные множества? Более чем сомнительно. Но вот строгость мышления и воображение не помешают и ему. С другой стороны, и математику есть чему поучиться у гуманитария. Последний более толерантен к чужому мнению, чем математик, и это говорится здесь в пользу гуманитария (разумеется, имеются в виду некоторые усреднённые – а то и воображаемые автором этих строк – гуманитарий и математик). Математические понятия резко очерчены, тогда как гуманитарные расплывчаты; и как раз эта расплывчивость делает их более адекватными для описания окружающего нас расплывчатого мира, поскольку его явления (или надо сказать «его феномены»?) сами расплывчаты. Математик ведь привык иметь дело с такими утверждениями, каждое из которых либо истинно, либо ложно, и эта привычка поневоле заставляет его видеть мир в чёрно-белом цвете. Его мышление настроено на более высокую контрастность или резкость (не знаю, какое слово здесь правильнее употребить). Ему, в отличие от гуманитария, чужда или непонятна мысль, что истина, может быть, и одна, но вот правда у каждого своя.

Поучительно сравнить между собой методы рассуждений, применяемые в математических и в гуманитарных науках. На самом деле речь идёт здесь о двух типах мышления, и человеку полезно познакомиться с каждым из них. Автор не берётся (потому что не умеет) описать эти типы, но попытается проиллюстрировать на двух примерах своё видение их различия.

Пример первый. Все знают, что такое вода. Это вещество с формулой Н2О. Но тогда то, что мы все пьём, не вода. Разумеется, в повседневной речи и математик, и гуманитарий и то и то называет водой, но в своих теоретических рассуждениях первый как бы тяготеет к тому, чтобы называть водой лишь Н2О, а второй – всё, что имеет вид воды. Потому что математик изучает идеальные объекты, имеющие такой же статус, как, скажем, круги и треугольники, которых нет в реальной природе; гуманитарий же изучает предметы более реалистические. Боюсь, впрочем, что этот пример слишком умозрителен и способен отчасти запутать читателя.

Поделиться:
Популярные книги

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Отверженный III: Вызов

Опсокополос Алексис
3. Отверженный
Фантастика:
фэнтези
альтернативная история
7.73
рейтинг книги
Отверженный III: Вызов

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Лисья нора

Сакавич Нора
1. Всё ради игры
Фантастика:
боевая фантастика
8.80
рейтинг книги
Лисья нора