Апология математики (сборник статей)
Шрифт:
Сущность аксиоматического метода останется непонятной без предъявления содержательных примеров. Сообщим поэтому, как выглядит фрагмент одной из аксиоматических систем для геометрии. Сперва объявляется, что существуют два типа объектов; объекты первого типа называются точками, объекты второго типа – прямыми. Что это за объекты, как они «выглядят», намеренно не объясняется. Далее декларируется, что существует некоторое отношение, называемое отношением инцидентности, в которое могут вступать между собой отдельно взятая точка и отдельно взятая прямая. Что это за отношение, опять-таки не объясняется, сообщается лишь, что если даны точка и прямая, то они могут быть инцидентны друг другу, а могут быть и не инцидентны.
Для примера приведём три из аксиом геометрии. Первая: для любых двух точек существует прямая, проходящая через каждую из этих точек. Вторая: существуют три точки, не лежащие на одной прямой. Третья: для любой прямой и любой не лежащей на ней точки существует не более одной прямой, проходящей через эту точку, но не проходящей ни через одну из точек, лежащих на исходной прямой (эта аксиома называется аксиомой о параллельных). Эти три аксиомы вкупе с другими аксиомами, говорящими о свойствах точек, прямых и отношения инцидентности, а также о свойствах некоторых других объектов и отношений, позволяют развить науку, называемую геометрией. При этом никакими иными сведениями, кроме тех, которые записаны в аксиомах, пользоваться не разрешается.
Предпринимались попытки создать аксиоматику и для некоторых нематематических дисциплин, скажем для фонологии. В качестве исходных понятий брались такие объекты, как звук языка и фонема. В качестве исходных отношений – отношение равносмысленности, в каковом отношении могли находиться две цепочки звуков языка, и отношение принадлежности, в каковом отношении могли находиться звук языка и фонема. Одна из аксиом постулировала, что если при замене в какой-то цепочке звуков языка звука X звуком Y оказалось, что результирующая цепочка не равносмысленна исходной, то звуки X и Y не могут принадлежать одной и той же фонеме. (Эта аксиома называется аксиомой минимальной пары, поскольку пара цепочек, не являющихся равносмысленными и различающихся лишь тем, что в одной и той же позиции в них стоят разные звуки, называется минимальной парой.) Другая аксиома постулировала, что если, напротив, в любой цепочке звуков такая замена приводит к равносмысленной цепочке, то звуки X и Y непременно принадлежат одной и той же фонеме (эта аксиома называется аксиомой свободного варьирования, поскольку про звуки X и Y, во всех случаях допускающие замену одного другим, так что результирующая цепочка оказывается равносмысленной исходной, говорят, что они находятся в отношении свободного варьирования).
И геометрический, и фонологический примеры демонстрируют главное, что характеризует аксиоматический метод. Это главное состоит в следующем. Природа вводимых в рассмотрение предметов и отношений намеренно не разъясняется, они остаются неопределяемыми. Единственное, что про них предполагается известным, – это те связи между ними, которые записаны в аксиомах. Вся дальнейшая информация выводится из аксиом путём логических умозаключений. Таким образом, человек, собирающийся развивать теорию на основе сформулированных аксиом, должен сделать над собой психологическое усилие и забыть всё, чему его учили в школе по геометрии и в вузе по фонологии. Другое дело, что он ни в коем случае не должен забывать этого на стадии составления списка аксиом, коль скоро желает, чтобы эти аксиомы отражали реальность.
В обоих наших примерах невозможно было выделить из списка аксиом геометрии такие, которые характеризовали бы только точку, или только прямую, или только инцидентность. Аналогично среди аксиом фонологии невозможно выделить такие, которые характеризуют, скажем, только звук речи или только равносмысленность. Набор аксиом характеризует, как правило, исходные понятия не по отдельности, а в их совокупности – через объявление их связей между собой.
Аксиоматический метод может рассматриваться как один из способов введения новых понятий наряду с широко известными демонстрационным и вербальным.
Демонстрационный способ заключается в предъявлении достаточного числа примеров, не только положительных, но и отрицательных. Желая, например, ввести понятие 'кошка', нужно показать достаточное количество кошек, но также, скажем, собак и кроликов, объясняя, что эти собаки и кролики не суть кошки.
Вербальный способ опирается на словесную дефиницию. Вот два примера вербального способа: 1) определение слова «хвоя» из толкового словаря Ушакова: «Узкий и упругий в виде иглы лист у некоторых пород деревьев»; 2) определение термина «простое число»: «Натуральное число называется простым, если оно, во-первых, больше единицы и, во-вторых, делится без остатка только на единицу и на само себя». (Интересно, кстати, сколько чисел, как простых, так и простыми не являющихся, надо предъявить, чтобы понятие простого числа могло быть усвоено демонстрационным способом? [17] )
17
Задача для развлечения нематематика: продолжить последовательность чисел 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; ….
Аксиоматический способ определения, скажем, понятия 'точка' предполагает определение этого понятия одновременно с понятиями 'прямая' и 'инцидентно'. Все эти три понятия определяются не порознь, а совокупно, через ту информацию о них, которая записана в аксиомах. Хотя записанная в аксиомах информация, очевидно, вербальна, аксиоматический способ существенно отличается от вербального. Ведь при вербальном способе новое понятие определяется через старые, уже известные; при аксиоматическом способе несколько новых понятий определяются друг через друга на основе тех соотношений, кои связывают их в аксиомах.
Сходным образом изучение математических моделей реальных явлений позволяет осознать границы моделирования, задуматься над соотношением между моделью и моделируемой реальностью. Но помимо этой философской миссии изучение математических моделей явлений экономики, психологии или лингвистики позволяет и лучше понять сами моделируемые явления.
Можно согласиться с теми, кто не устаёт напоминать об ограниченности математических моделей. Действительно, когда говорят о точности такой модели, то подразумевают её точность как математического объекта, т. е. точность «внутри себя». Когда говорят о точности модели, речь не идёт о точности описания, т. е. о точном соответствии модели описываемому фрагменту действительности. Под ограниченностью математических моделей как раз и понимается их неспособность охватить описываемое ими явление во всей его полноте.
Однако нельзя согласиться с теми, кто в этой ограниченности видит их слабость. Скорее, в этом их сила. Математическая модель должна быть проста, а потому огрублена.
Проиллюстрирую сказанное примером. Всем известно, что Земля – шар. Те, кто получил некоторое образование, знают, что Земля – эллипсоид вращения, сдавленный у полюсов. Геодезисты уточнят, что Земля – геоид, иначе говоря, геометрическая фигура, поверхность которой совпадает с поверхностью Земли без учёта таких мелких деталей, как горы и т. п. (более точно, совпадает с той поверхностью, которую образовывал бы Мировой океан, если бы все материки и острова были бы залиты водой или, ещё более точно, были бы срезаны по уровню Мирового океана). Мы имеем здесь три математические модели, с возрастающей точностью описывающие моделируемый ими объект – форму планеты Земля. Важнейшая из этих моделей – первая, она же самая неточная. Хотя для прокладки авиамаршрутов нужна, возможно, и вторая, а для запуска баллистических ракет – даже третья.
Полное понимание реального строения окружающей нас Вселенной вряд ли когда-либо будет достигнуто. Однако именно математические модели приближают нас к такому пониманию и – это главное – объясняют, каким это строение может быть. А ведь если вдуматься, то понимание некоторых сторон устройства пространственно-временн'oго континуума (а может, вовсе и не континуума, а чего-то дискретного) существенно для выживания человечества или, точнее, того, во что превратится человечество в далёком будущем.