Архитектура операционной системы UNIX
Шрифт:
В качестве примера рассмотрим две группы процессов (Рисунок 8.6), в одной из которых один процесс (A), в другой — два (B и C). Предположим, что ядро первым запустило на выполнение процесс A, в течение секунды увеличивая соответствующие этому процессу значения полей, описывающих индивидуальное и групповое ИЦП. В результате пересчета приоритетов по истечении секунды процессы B и C будут иметь наивысшие приоритеты. Допустим, что ядро выбирает на выполнение процесс B. В течение следующей секунды значение поля ИЦП для процесса B поднимается до 60, точно такое же значение принимает поле группового ИЦП для процессов B и C. Таким образом, по истечении второй секунды процесс C получит приоритет, равный 75 (сравните с Рисунком 8.4), и ядро запустит на выполнение процесс A с приоритетом 74. Дальнейшие действия можно
8.1.6 Работа в режиме реального времени
Режим реального времени подразумевает возможность обеспечения достаточной скорости реакции на внешние прерывания и выполнения отдельных процессов в темпе, соизмеримом с частотой возникновения вызывающих прерывания событий. Примером системы, работающей в режиме реального времени, может служить система управления жизнеобеспечением пациентов больниц, мгновенно реагирующая на изменение состояния пациента. Процессы, подобные текстовым редакторам, не считаются процессами реального времени: в них быстрая реакция на действия пользователя является желательной, но не необходимой (ничего страшного не произойдет, если пользователь, выполняющий редактирование текста, подождет ответа несколько лишних секунд, хотя у пользователя на этот счет могут быть и свои соображения). Вышеописанные алгоритмы планирования выполнения процессов предназначены специально для использования в системах разделения времени и не годятся для условий работы в режиме реального времени, поскольку не гарантируют запуск ядром каждого процесса в течение фиксированного интервала времени, позволяющего говорить о взаимодействии вычислительной системы с процессами в темпе, соизмеримом со скоростью протекания этих процессов. Другой помехой в поддержке работы в режиме реального времени является невыгружаемость ядра; ядро не может планировать выполнение процесса реального времени в режиме задачи, если оно уже исполняет другой процесс в режиме ядра, без внесения в работу существенных изменений. В настоящее время системным программистам приходится переводить процессы реального времени в режим ядра, чтобы обеспечить достаточную скорость реакции. Правильное решение этой проблемы — дать таким процессам возможность динамического протекания (другими словами, они не должны быть встроены в ядро) с предоставлением соответствующего механизма, с помощью которого они могли бы сообщать ядру о своих нуждах, вытекающих из особенностей работы в режиме реального времени. На сегодняшний день в стандартной системе UNIX такая возможность отсутствует.
Рисунок 8.6. Пример планирования на основе справедливого раздела, в котором используются две группы с тремя процессами
8.2 СИСТЕМНЫЕ ОПЕРАЦИИ, СВЯЗАННЫЕ СО ВРЕМЕНЕМ
Существует несколько системных функций, имеющих отношение к времени протекания процесса: stime, time, times и alarm. Первые две имеют дело с глобальным системным временем, последние две — с временем выполнения отдельных процессов.
Функция stime дает суперпользователю возможность заносить в глобальную переменную значение глобальной переменной. Выбирается время из этой переменной с помощью функции time:
time(tloc);
где tloc — указатель на переменную, принадлежащую процессу, в которую заносится возвращаемое функцией значение. Функция возвращает это значение и из самой себя, например, команде date, которая вызывает эту функцию, чтобы определить текущее время.
Функция times возвращает суммарное время выполнения процесса и всех его потомков, прекративших существование, в режимах ядра и задачи. Синтаксис вызова функции:
times(tbuffer)
struct tms *tbuffer;
где tms — имя структуры, в которую помещаются возвращаемые значения и которая описывается следующим образом:
struct tms {
/* time_t — имя структуры данных, в которой хранится время */
time_t tms_utime; /*
time_t tms_stime; /* время выполнения процесса в режиме ядра */
time_t tms_cutime; /* время выполнения потомков в режиме задачи */
time_t tms_cstime; /* время выполнения потомков в режиме ядра */
};
Функция times возвращает время, прошедшее "с некоторого произвольного момента в прошлом", как правило, с момента загрузки системы.
Рисунок 8.7. Пример программы, использующей функцию times
На Рисунке 8.7 приведена программа, в которой процесс-родитель создает 10 потомков, каждый из которых 10000 раз выполняет пустой цикл. Процесс-родитель обращается к функции times перед созданием потомков и после их завершения, в свою очередь потомки вызывают эту функцию перед началом цикла и после его завершения. Кто-то по наивности может подумать, что время выполнения потомков процесса в режимах задачи и ядра равно сумме соответствующих слагаемых каждого потомка, а реальное время процесса-родителя является суммой реального времени его потомков. Однако, время выполнения потомков не включает в себя время, затраченное на исполнение системных функций fork и exit, кроме того оно может быть искажено за счет обработки прерываний и переключений контекста.
С помощью системной функции alarm пользовательские процессы могут инициировать посылку сигналов тревоги ("будильника") через кратные промежутки времени. Например, программа на Рисунке 8.8 каждую минуту проверяет время доступа к файлу и, если к файлу было произведено обращение, выводит соответствующее сообщение. Для этого в цикле, с помощью функции stat, устанавливается момент последнего обращения к файлу и, если оно имело место в течение последней минуты, выводится сообщение. Затем процесс с помощью функции signal делает распоряжение принимать сигналы тревоги, с помощью функции alarm задает интервал между сигналами в 60 секунд и с помощью функции pause приостанавливает свое выполнение до момента получения сигнала. Через 60 секунд сигнал поступает, ядро подготавливает стек задачи к вызову функции обработки сигнала wakeup, функция возвращает управление на оператор, следующий за вызовом функции pause, и процесс исполняет цикл вновь.