Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:
По-видимому, любые дальнейшие оценки возможности технической реализации и количественных характеристик подобного «атомного противодействия» должны быть предметом специальных теоретических и экспериментальных исследований, проясняющих физику и механику воздействия ядерного взрыва на астероид в условиях космического пространства.
10.7.4. Динамические и энергетические характеристики маневра поражающего астероида. Рассмотрим условия успешного выполнения маневра увода астероида с поражающей траектории. Теперь можно полагать, что достаточный резерв времени позволяет провести активное противодействие не менее чем за виток орбиты астероида. Будем считать, что последняя аналогична земной, т. е. имеет малое наклонение и малый эксцентриситет, а период обращения Pa составляет величину порядка года.
Согласно импульсной схеме, уход вдоль траектории астероида Sa составляет:
Sa = 6(r0/V0)VT Nв, (10.19)
где r0, V0 — радиус орбиты и скорость астероида, а Nв — число витков орбиты. Тогда, умножив выражение для Sa справа и слева на ma и учитывая, что (r0/V0) = Pa/2, а VT = Pи/ma, получим
Ua Pи(3PаNв). (10.20)
Величина 3PaNв заменяет время перехвата в (10.15) и имеет тот же смысл — в данном случае это время маневра. Можно видеть, что сверх очевидного значения времени маневра астероида PaNв специфика орбитального движения в рамках задачи маневра выразилась в появлении дополнительного множителя, равного 3. Отсюда видно, что в случае маневра астероида значение импульса уменьшается в Nв(3Pа/t) раз по сравнению со случаем перехвата. Так, например, для маневра на одном витке (Nв = 1) требуется импульс в 3(365/10)~ 110 раз меньший, чем для перехвата, что весьма заметно.
В соответствии с разгонной схемой уход астероида будет определяться выражением
Sa = 62r0Nв2 (Tp/g0),(10.21)
где g0 — ускорение астероида, вызванное притяжением Солнца, Tp — постоянно действующее ускорение. Заметим, что g0 = µc/r02 (µc — гравитационный параметр Солнца) и Tp = Fp/ma. Тогда, учитывая известный закон Кеплера Pa2 = 42r03/µc, а также то, что время действия ускорения составляет NвPа, получим выражение для обобщенного параметра увода в случае маневра астероида:
Ua = Pp(1,5PаNв), (10.22)
аналогичное (10.20).
Таким образом, в рамках разгонной схемы потребный импульс также вдвое больше, чем в импульсной схеме, точно так же, как это имело место в случае перехвата. Поэтому использование импульсной схемы при маневре астероида и здесь остается предпочтительным.
Обращаясь к представленным относительно случая перехвата оценкам, видим, что уменьшение необходимого импульса примерно в 110 раз (и это при минимальном времени маневра —
Согласно импульсной схеме, величина импульса увода составляла Pи 1, 5 1010 кг м/с. Теперь же, при времени маневра, равном ~ 1 году, импульс уменьшается в 110 раз и становится равным Pи 1,35 108 кг м/с. Вспомним, что в рамках разгонной схемы необходимый импульс увеличивается вдвое, и тогда при длительности витка 1 год (т. е. tp = 3,15 107 с) потребная тяга (действующая в течение года) и создаваемое ей ускорение приобретут значения:
Fp = (2,7 108 кг м/с) /(3 3,15 107 с) 3 Н 300 гс,
gp = Fp/ma 3 10– 9 м/с2. (10.23)
Возникает естественное желание, получив такие значения реактивной тяги и ускорения, оценить технологические рамки их реализации.
Допустим, что предполагается получить такую тягу за счет использования солнечного паруса. Известно [Эльясберг, 1965; Левантовский, 1980], что один грамм-силы на орбите Земли можно получить, применяя парус площадью 2000 м2. Следовательно, для маневра, выполняемого в течение года, понадобится парус с увеличенной в 300 раз площадью, а его размеры составят 800 x 800 м. Естественно, при увеличении срока маневра необходимая площадь паруса уменьшится обратно пропорционально. Так, для маневра, выполняемого в течение 4 лет, потребуется парус размером всего лишь (!) 400 x 400 м, монтируемый на астероиде (напомним, его диаметр 100 м).
Теперь предположим, что для этого используется электроракетная двигательная установка (ЭРДУ) имеющегося в настоящее время типа. Допустим многократное резервирование, что обеспечит ее непрерывную работу в течение года. Тогда, приняв оценочное удельное значение потребной мощности 150 Вт/1 гс, получим, что мощность устройства, питающего ЭРДУ, должна составлять~ 45 кВт. Логично предположить питание от солнечных батарей. Тогда, приняв, что для них типичная удельная мощность равна 1 кВт при площади ~ 5 м2 [Скребушевский, 1992], увидим, что требуемая мощность может быть получена от солнечных батарей с общей площадью 250 м2 и размерами 16 x 16 м.
Проявив некоторый оптимизм и предположив безотказную работу ЭРДУ в течение 4 лет, получим соответственно потребную мощность батарей, равную 12 кВт, что при размерах панелей солнечных батарей 11 x 11 м уже вполне приемлемо. Для полноты представления оценим дополнительно требуемый запас рабочего тела ЭРДУ, исходя из весьма консервативной оценки удельного импульса величиной J 2000 c. Тогда для создания тяги 300 гс в течение года потребуется масса рабочего тела, равная Mp = Fptp/J 4,5 т, что тоже не выходит за рамки возможного.
Разумеется, все эти оценки являются нижним пределом, поскольку не учитывались эффекты вращения астероида и прочие факторы, приводящие в конечном счете к неизбежным потерям при реализации потенциальных возможностей. Хотя рассмотренные модельные примеры могут показаться несколько искусственными, тем не менее, они позволяют сделать некоторые выводы и предложения.
10.7.5. Результаты рассмотрения модельных схем противодействия.
1. Схемы увода объектов, даже минимальных размеров, в ситуациях перехвата явно не могут быть реализованы при текущем состоянии технологических средств космической техники. Опыт освоения космического пространства за прошедшее пятидесятилетие показывает, что упомянутая задача не может быть реализована также и в ближайшее пятидесятилетие при прогнозируемом развитии космической технологии.