Чтение онлайн

на главную

Жанры

Айтрекинг в психологической науке и практике
Шрифт:

Обязательным условием для расчета матриц является наличие пространственных областей интереса, выделяемых на стимульном материале автоматически или при участии экспериментатора-психолога.

Автоматическое выделение в простейшем случае подразумевает разделение плоскости стимула на нумерованные прямоугольные ячейки заданного размера, которые и рассматриваются как области интереса (см. пример на рисунке 1). Такой способ выделения областей интереса универсален и наиболее адекватен при отсутствии по различным причинам исходных предположений о вероятных «аттракторах внимания» в стимульном материале.

Рис. 1. Участок

текстового стимула, автоматически размеченный вертикальными областями интереса, используемыми для обработки последовательностей позиций фиксаций и последующего анализа динамики горизонтальных движений взора испытуемых

Ручное выделение областей интереса подразумевает указание на стимуле именованных плоских фигур требуемых размеров (прямоугольников, многогранников, эллипсов и пр.). Итоговое расположение областей в данном случае, разумеется, зависит от стимульного материала и гипотез исследования, поскольку требует обоснованных предположений о том, какие именно области стимула действительно привлекают зрительное внимание исследуемых категорий испытуемых.

Рис. 2. Участок стимула задачи теста Равена, размеченный вручную областями интереса, используемыми для обработки последовательностей позиций фиксаций и последующего анализа динамики движений взора испытуемых между элементами матрицы задания и областью альтернатив ответа

Формирование последовательностей посещенных областей интереса. По позиционным данным выделенных областей интереса и зарегистрированным траекториям взора на плоскости стимула или последовательностям точек фиксаций взора строятся последовательности номеров «посещенных» областей, в которых пребывал взор испытуемых. Обычно в таких последовательностях повторные смежные пребывания в одной и той же области интереса «склеиваются», т. е. рассматриваются как единое событие. Сформированные последовательности подвергаются дальнейшему анализу: по ним строятся матрицы частот или вероятностей переходов между областями интереса, либо матрица представления преемника, алгоритмы построения которых представлены в следующем подразделе.

Вычисление матриц частотности переходов. По полученным последовательностям далее вычисляются матрица вероятностей переходов и матрица представления преемника. Расчет элементов матрицы вероятностей переходов между зонами интереса несложен и выполняется следующим образом:

– инициализируется (заполняется нулями) квадратная матрица, чьи размерности соответствуют количеству областей интереса;

– по очереди перебираются элементы последовательности посещенных областей интереса (исключая последнюю) – фиксируется текущий элемент последовательности (номер посещенной зоны, обозначаемый как i) и последующий элемент (номер зоны, в которую совершен переход, обозначаемый как j), а сама матрица обновляется: элемент с индексом (i, j) увеличивается на единицу;

– формируется матрица оценок вероятностей переходов, состоящая из элементов полученной на предыдущем шаге матрицы абсолютных частот переходов, поделенных на сумму всех ее элементов.

Расчет элементов матрицы представления преемника более сложен для понимания, однако, так же легко реализуется программно:

– инициализируется (заполняется нулями) квадратная матрица М, чьи размерности соответствуют количеству областей интереса;

– по очереди перебираются элементы последовательности посещенных областей интереса (исключая последнюю) – фиксируется текущий элемент последовательности (номер посещенной зоны, обозначаемый как О и последующий элемент (номер зоны, в которую совершен переход, обозначаемый как;'), a i-я строка матрицы М обновляется по следующему правилу:

где I – единичная матрица того же порядка, что и М, а – параметр скорости обучения, (0<а<1), у – временной весовой коэффициент, (0<у<1).

Таким образом, при наблюдении перемещения из области интереса i в область; набор ожидаемых преемников для «отправителя» i (строка Мi) обновляется так, чтобы учесть переход в «преемника» j, а также в предполагаемые (с учетом предыстории процесса) преемники посещаемой области; (столбец М), но с уменьшенным влиянием на результат (для этого производится умножение на понижающий временной коэффициент у). В итоге мы учитываем не только сам факт перемещения из области i в область l, но и предысторию перемещения из области j в другие области.

Оценка SR-матрицы, построенная по заданной последовательности посещенных областей интереса, содержит сумму взвешенных по удаленности во времени будущих попаданий в некоторую область интереса, определяемую заданным столбцом при условии, что в данный момент посещена область, определяемая строкой. Заметим, что получаемая матрица не является стохастической (т. е. ее элементы не представляют собой оценки вероятностей). Поэтому сумма всех значений столбца SR-матрицы может превышать единицу. Для корректного сопоставления SR-матриц, полученных для записей различной длительности, необходимо эти матрицы нормировать (делить каждый элемент на сумму элементов матрицы). Однако нормирование может и не проводиться, если исследователя интересует, в частности, вариация длительностей траекторий взора.

Стоит заметить, что относительно недавно была продемонстрирована формальная связь концепции представления преемника и модели эпизодической и семантической памяти (Howard, Kahana, 2002; Sederberg et al, 2008).

Важным отличием между матрицей представления преемника и матрицей вероятностей переходов является то, что последняя отражает закономерности только первого порядка (касающиеся переходов между смежными элементами последовательности), в то время как первая настраивается для предсказания будущих посещений в рамках временного окна, чья эффективная ширина зависит от коэффициента у (Gershman et al., 2012).

Пусть дана следующая последовательность номеров посещенных областей интереса: [1, 2, 4, 2, 4, 1, 4, 2, 3, 1, 3, 2, 1, 3, 1, 2, 4, 1, 3, 1, 3]. По заданной последовательности вычислены матрица вероятностей переходов и нормированная SR-матрица, представленные в таблицах 1 и 2.

Приведенный пример матриц демонстрирует, например, что оценка вероятности переходов из области № 4 в область № 3 является нулевой, поскольку прямых переходов из области № 4 в область № 3 в последовательности не наблюдается. При этом матрица представления преемника отражает взвешенное по временной удаленности нормированное количество будущих пребываний в области № 3 после пребывания в области № 4 (ячейка № 3.4), а также указывает, например, на то, что ближайшие по времени будущие попадания в область № 3 после пребывания в ней же более вероятны (ячейка № 3.3), нежели будущие попадания в область № 4.

Сокращение размерности пространства переменных и анализ выделенных компонент или факторов. Рассчитав значения традиционных интегральных показателей и дополнительные информативные признаки, для сокращения размерности пространства анализируемых переменных можно с помощью соответствующего метода выделять скрытые главные компоненты или факторы, объясняющие высокую долю суммарной дисперсии полученного набора переменных. Важным аспектом при выборе компоненты/фактора является как доля описываемой дисперсии, так и возможность интерпретации новой переменной по величинам компонентных нагрузок наблюдаемых переменных (частных корреляций переменных и компонент). Примеры двух главных компонент, описывающих 19,5 % доли суммарной дисперсии элементов SR-матриц, построенных по последовательностям фиксаций взора в областях интереса, выделенных на стимульном материале теста Равена, приведены на рисунках 3 и 4. Номера столбцов и строк данных матриц совпадают с номерами областей интереса, выделенных в стимульном материале заданий теста Равена (1, 2, 3 – верхняя строка элементов матрицы задания; 4, 5, 6 – средняя строка; 7, 8, 9 – нижняя строка; 10 – область альтернатив ответа).

Поделиться:
Популярные книги

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Секси дед или Ищу свою бабулю

Юнина Наталья
Любовные романы:
современные любовные романы
7.33
рейтинг книги
Секси дед или Ищу свою бабулю

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

Ваше Сиятельство 4т

Моури Эрли
4. Ваше Сиятельство
Любовные романы:
эро литература
5.00
рейтинг книги
Ваше Сиятельство 4т

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5