Айтрекинг в психологической науке и практике
Шрифт:
Рис. 5. Синхронный вывод трека в интервале 500 мс и видеоизображения глаза, которое хранится в отдельном файле
Разработанный программно-аппаратный комплекс с успехом применялся нашей научной группой в целом ряде исследований. Основными направлениями исследований стали работы со статическими и динамическими изображениями (Шурупова и др., 2015) и исследования движений глаз при чтении предложений с синтаксической
Приведено описание программно-аппаратного комплекса, разработанного нашей научной группой. В нем предусмотрены широкие возможности настройки как аппаратной части (изменение частоты, разрешения и др.), так и широкий спектр программных настроек, необходимых для удобной и продуктивной работы с данными регистрации движений глаз.
Установка позволяет быстро освоить навыки работы с ней, что является также существенным преимуществом, особенно для начинающих работать с айтрекингом. Важными особенностями являются возможности синхронного вывода треков движений глаз и видео изображения глаза с выделенным на нем зрачком и оперативного добавления калибровки в процессе проведения эксперимента.
Циклы работы программы VisualStimulator и поток координат зрачка синхронизованы по времени. В настоящее время формат принимаемых данных определяется программным обеспечением цифровой камеры Fastvideo-ЗОО, однако потенциально существует возможность работы с данными в любом другом формате и с другими типами камер. Этот фактор дает преимущества перед используемыми в настоящее время коммерческими айтрекерами, так как позволяет изменять аппаратную часть, базируясь на серийно производимых типах видеокамер в широком ценовом диапазоне.
Существует потенциальная возможность применения программно-аппаратного комплекса для работы с животными (низшими приматами).
Видео нистагмограф. URL:(дата обращения: 15.06.2015).
Жондо А. С, Анисимов В. Н., Фёдорова О. В., Латаное А. В. Движения глаз при чтении предложений с локальной и глобальной синтаксической неоднозначностью // Когнитивная наука в Москве: новые исследования. М.: ООО «Буки Веди», ИППиП, 2015. С. 131–134.
Скоростная матрица ШРА-300. URL:cypress/lupa300.htm;lupa_300.pdf (дата обращения: 15.06.2015).
Стандартная система скоростной видеозаписи: 640x480,10 бит, 300 fps. URL:http://fastvideo.ru/ products/vga/fv300.htm (дата обращения: 15.06.2015).
Программное обеспечение Fastvideo Lab для скоростной видеосъемки. URL:(дата обращения: 15.06.2015).
Программное обеспечение для видео нистагмографии. URL:vdvs.ru/products/software/software.htm (дата обращения: 15.06.2015).
Центр разработки для Windows. Mailslots. URL:com/ru-ru/library/windows/desktop/aa365576%28v=vs.85%29.aspx (дата обращения: 15.06.2015).
Шурупова М. А., Анисимов В. Н., Красноперое А. В., Латаное А. В. Параметры движений глаз при просмотре динамических сцен // Когнитивная наука в Москве: новые исследования. М.: ООО «Буки Веди»-ИППиП, 2015. С. 492–498.
Шурупова М. А., Анисимов В. Н., Латаное А. В. Параметры движений глаз при просмотре динамических сцен // Одиннадцатый международный междисциплинарный прогресс «Нейронаука для медицины и психологии». Тезисы докладов. Судак, 2015. С. 456.
Lemire D. A Better Alternative to Piecewise Linear Time Series Segmentation // SDM. 2007. P. 545–550.
PIXCI® EB1 PCI Express xl Base Camera Link Frame Grabber. URL: www.epixinc.com/products/pixci_ebl.htm (дата обращения: 15.06. 2015).
Sheela S. V., Vijaya P. A. Mapping Functions in Gaze Tracking // International Journal of Computer Applications. 2011. V. 26. № 3. P. 36–42.
Velichkovsky B. M. et al. Two visual systems and their eye movements: Evidence from static and dynamic scene perception // Proceedings of the XXVII conference of the cognitive science society. Mahwah, N.J.: Lawrence Erlbaum, 2005. С 2283–2288.
Обзор изобретений, полученных при использовании айтрекинговых исследований в процессе изучения способности 3D-восприятия образов плоскостных изображений
В. Н. Антипов, А. В. Жегалло, В. В. Курчавов, Н. В. Звёздочкина, Л. М. Попов
Айтрекинговые исследования, изучение движения глаз позволяют получить первичную информацию о новой способности зрительного восприятия – способности воспринимать образы плоскостных изображений с эффектами глубины, объема, пространственной перспективы (далее – феномен) (Антипов, 2005). Естественно-природный механизм зрительного восприятия – стереоскопическое зрение, бинокулярная диспаратность однозначно препятствует наблюдению атрибутов феномена. Однако в настоящее время по различным направлениям феномена получено 19 патентов на изобретения. Авторами и патентообладателями изобретений являются научные работники Казанского университета, ИП РАН, ЦЭП МГППУ, ИФ РАН, Ульяновского училища гражданской авиации. Существенный вклад в доказательство существования феномена внесли именно исследования на бинокулярном айтрекере. Экспериментально показано наличие восприятия глубины, объема образов плоскостных изображений, величина которых соизмерима с трехмерными параметрами, наблюдаемыми при рассматривании 3D-растровых изображений. При этом элементы феномена не меньше уровня наблюдаемой стереоскопической глубины стереограмм в условиях фузии.
В настоящей работе приводится информация по изобретениям, полученная в результате проведенных исследований. Фактический материал сгруппирован по нескольким направлениям изобретательской деятельности. Первое – непосредственно доказательство способности восприятия глубины и объема. Второе – визуализация наблюдаемых эффектов восприятия глубины. Третье – применение айтрекинговых исследований для: 1) изучения ЭЭГ активности мозга при наблюдении феномена; 2) разработки системы тестов; 3) выявление особенностей коллективно-когнитивного бессознательного восприятия. Четвертое – использование результатов работы для усовершенствования пособий для тренинга, применяемых при развитии новой способности восприятия, при обучении операторов интроскопа.
Работы проводились в Центре экспериментальной психологии МГППУ (айтрекер SMI HiSpeed) и в лаборатории физиологии зрения Института физиологии им. И. П. Павлова РАН (айтрекер SMI RED). В качестве стимульных изображений использовались: плоскостные, растровые изображения, стереограммы в плоскостном и трехмерном вариантах наблюдения. Испытуемым был один из авторов настоящей работы. При написании изобретений использовалась информация: числовых массивов значений Х-, Y-координат направления взора правого и левого глаз и построение гистограмм разности. Проводилась регистрация траектории движения глаз, визуализация текущих значений координат. Обработка информации: методы нелинейной динамики с построением гистограмм разности Х-, Y-координат. Траектории движения глаз на стимульных изображениях позволяют визуализировать наблюдаемые эффекты восприятия глубины. Оперативные результаты величины Х-, Y-координат непосредственно демонстрируют возникновение горизонтальной и вертикальной диспаратности.