Беседы о рентгеновских лучах
Шрифт:
Впрочем, и эта надежда проблематична.
Перед нами вопрос, который уже самой постановкой своей направлен против скептицизма: а зачем человеку звезды, нужны ли они в хозяйстве? Ответить позволяет именно "абстрактное теоретизирование" - учение об их эволюции, свой вклад в которое продолжает вносить и рентгеновская астрономия.
Вероятно, каждый небесный икс-объект рожден Сверхновой, вспыхнувшей очень давно, может быть, миллионы лет назад. Но каждый имеет свою биографию.
Почему один оказался "черной дырой", другой - нейтронной звездой? Может ли наше Солнце стать
Сегодня светимость Солнца гораздо больше первоначальной. Она будет расти и впредь. Вместе с его размерами. Со временем наше дневное светило из желтого карлика станет красным гигантом с радиусом, который в десятки раз больше нынешнего. "Распухнет" настолько, что, быть может, даже заполнит собой орбиту Меркурия, как бы подпоясавшись ею. Вопрос о судьбах этой мертвой планеты, пожалуй, и впрямь не назовешь жизненно важным. "А любопытно, черт возьми, что будет после нас с людьми, что станется потом?" - вопрошал Н. Асеев, и это не праздное любопытство.
Светимость Солнца увеличится в сотни раз. Намного ощутимей окажется и его рентгеновская радиация.
По крайней мере, для астронавтов, для бесчисленных обитателей "эфирных поселений" в обжитом космосе.
А что на Земле? Возможны временные трудности, которые будут длиться миллионолетиями. Средняя температура поднимется на сотни градусов. Океаны закипят.
Пары воды затянут небо тучами, сплошной облачной пеленой. Зато глазам лунного наблюдателя лик Земли предстанет еще более прекрасным, чем сегодня, словно закутанным в белый пуховый платок.
Что потом? Рано или поздно Солнце из красного гиганта станет белым карликом - маленькой звездой гораздо большей плотности и куда меньшей светимости, чем ныне. Процедура такова: оно сбросит наружные оболочки, и от него останется лишь внутреннее ядро.
Его излучение, включая рентгеновское, станет несравненно слабее. Прежние неприятности снимет как рукой.
Метеопрогноз на будущее: "прохладнее", хотя и "солнечнее". Да, водяные пары в атмосфере сконденсируются, плотная завеса облаков рассеется; на обе макушки планеты снова надвинутся белоснежные шапки, затем замерзнут океаны, и материки окажутся под ледниковым панцирем. Белое безмолвие всюду будет оживляться жутким воем обжигающего морозного ветра, а мрачное однообразие снежной пустыни от полюсов до экватора - огненными всплесками вулканических извержений...
В конце концов Солнце совсем остынет и погаснет, став из белого карлика черным. Мертвым небесным телом скромных габаритов (размерами меньше Земли), но зато солидной плотности (в миллионы раз больше, чем у воды).
Нарисованная картина при всей своей яркости, разумеется, гипотетична. Если же она правдоподобна, то нельзя забывать, что не так страшен черт, как его малюют. У человечества в запасе миллиарды лет.
Какими бы ни были эти космогонические этюды, они хороши уже тем, что дали нам приближенное представление об эволюции звезд, подобных Солнцу. И теперь нам легче понять ответ астрофизиков на вопрос: может ли оно вспыхнуть, как Сверхновая?
Нет. Почти наверняка. Почему?
Если звезда имеет ядро, первоначальная масса которого меньше 1,2 солнечной, то, пережив относительно недолгое состояние красного гиганта, она спокойно превращается в белого карлика (а затем, по охлаждении, в черного). Спокойно потому, что ядро освобождается от оболочек медленно, без особых эксцессов. Лишь при массе от 1,2 до 2,4 солнечной, наружные слои будут отбрасываться быстро, бурно, взрывообразно, а сама звезда стремительно сожмется в результате гравитационного коллапса, став нейтронной. Наконец, при значениях массы от 2,4-3 солнечных и выше после катастрофы возникает "черная дыра".
Источниками смертоносной рентгеновской радиации служат "черные дыры" и нейтронные звезды, но не белые карлики Разумеется, губительна она для тех, кто оказался поблизости от ее источника.
Итак, солнечная система гарантирована от многих неприятностей, но... Никто не поручится, что она не пройдет через туманность, подобную Крабовидной, оставленную какой-нибудь Сверхновой. А если попадет в нее, что тогда? Ливни космических лучей, которые низвергаются на нашу планету, могут оказаться в сотни раз сильнее, чем ныне, притом надолго. Что это значит, легко видеть из несложного расчета.
Предельно допустимая доза облучения для человека - 5 рентген за год. Та порция, которую "выдает"
нам естественная радиоактивность в приземном слое воздуха, сравнительно ничтожна - в среднем 0,125 рентгена за год. На 2/3 она обусловлена земными факторами. Но на 1/3 - небесными, на которые приходится таким образом более 0,04 рентгена. Если же потоки ионизирующей радиации из вселенной увеличатся, допустим, в 300 раз, то "добавка свыше" возрастет до 12 с лишним рентген за год. А для космонавтов в заатмосферном пространстве, где нет многокилометровою воздушного щита, - и того больше.
Это влияние может оказаться отнюдь не безобидным не только для человека - для всей земной фауны и флоры. Конечно, радиочувствительность различных организмов неодинакова. Для многих из них определена довольно точно летальная (смертельная) доза, которая через 30 дней после облучения убивает 50 процентов животных или растений. Для обезьян это 600 рентген, для мышей - до 650, для карасей - 1800, для змей - от 8 тысяч до 20 тысяч... Еще устойчивей одноклеточные: дрожжи погибают при дозе в 30 тысяч рентген, амебы - 100 тысяч, инфузории - более 300 тысяч... Высшие растения тоже по-разному реагируют на радиацию. Если семена лилии полностью теряют всхожесть, получив "всего" 2 тысячи рентген, то селена капусты выдерживают 64 тысячи и даже больше.
Некоторые микробы выдерживают сотни тысяч рентген. При таких дозах разрушается даже неживая материя: пластмасса становится хрупкой и растрескивается, стекло теряет прозрачность, а вот некоторые микробы выживают. Очевидно, микроорганизмы обладают способностью приспосабливаться к условиям повышенной радиации и восстанавливать радиационные повреждения. Обнаружены микробы, живущие даже в атомком реакторе. Тем не менее ионизирующая радиация нашла применение в качестве средства холодной стерилизации медицинских изделий из полимерных материалов, не выдерживающих высоких температур, шовного материала и перевязочных средств, хирургических инструментов, лекарственных препаратов, вакцин и пр.