Безумные идеи
Шрифт:
Удачи и ошибки складывались, вызывая все больший интерес к новому явлению. И надо сказать, что удачи были очень скромны и малоэффектны, а потому вначале почти незаметны. Зато вокруг ошибок всегда клубились споры и дискуссии. Сколько шума, например, наделала гипотеза американца Милликена, которая затем оказалась ошибкой!
Начал Милликен с большой удачи: ему посчастливилось правильно определить мощность нового излучения, что было нелегко. Но когда он попытался понять природу явления, то поддался на приманку эффектной аналогии.
Милликен, по-своему взвесив результаты опытов, пришел к выводу, что космическое излучение подобно свету. Но отличается оно от света
Но впоследствии оказалось, что Милликен не заметил в своей теории существенной ошибки. Если бы все было так, как он предполагал, то ни Солнце, ни звезды не могли бы существовать. Они были бы неустойчивы. Давление гипотетического излучения не могло быть уравновешено силами притяжения.
Со временем было установлено, что космические лучи вовсе не электромагнитное излучение и совсем не подобны ни свету, ни рентгеновым или гамма-лучам. Но тогда...
Началась и кончилась первая мировая война. В России победно отгремела революция. А в области физики космических лучей все по-прежнему было ново и не изведано, все по-прежнему оставалось на грани догадки, смелой гипотезы. Недаром после первых шагов еще лет десять длился спор о самом существовании космического излучения. В это время большинство ученых всего мира резко критиковало догадки Гесса или обходило их молчанием, предпочитая заниматься более насущными научными проблемами. Лишь немногие, самые упорные, старались разобраться.
Кого же из них назвать? Мысовский и Вериго в СССР, Гесс в Австрии, Кольхерстер и Регенер в Германии да еще несколько имен. Но уж они-то были полностью увлечены загадкой внеземного излучения. Лишь они угадывали за немногочисленными и малопонятными фактами возможность ответа на самые сокровенные загадки космоса. Им хотелось во что бы то ни стало ухватиться за неуловимую ниточку, чтобы распутать клубок космических проблем.
Но исследование высотного излучения было лишь второстепенной задачей среди научных проблем первой четверти XX века. Начало нашего столетия принесло физикам много блестящих побед. Одна за другой под напором человеческой мысли распахивались двери в неведомое, трещали и рушились стены прекрасного и, казалось, незыблемого здания классической физики... На научном небосводе вспыхнули имена Планка, Эйнштейна и других творцов современной физики, изменивших понятия человека об энергии, пространстве, времени и массе. Вместо прежних механистических взглядов на природу пришли новые глубокие идеи о прерывности электромагнитной энергии, об атомах света, о взаимодействии вещества и энергии, о связи пространства и времени и делимости атомов вещества на еще более элементарные частицы... Ломались устоявшиеся представления, ученые привыкали смотреть на мир новыми глазами.
Естественно, что передовые идеи не могли не отразиться на зарождающейся области физики, не могли не скреститься под новым углом зрения, не могли не повлиять на подход к непонятному явлению и методы его анализа. Эти идеи принес в новую область знаний молодой советский ученый Дмитрий Владимирович Скобельцын.
Скобельцын родился в семье профессора физики. Поэтому он вошел в науку с запасом лучших традиций русских ученых. Он происходил из семьи, настроенной в политическом смысле революционно, поэтому не боялся и в исследованиях ломать устаревшие взгляды и допотопные методы.
Это, возможно, стало предпосылкой его замечательных достижений в зарождающейся науке о космических лучах.
Началась вторая четверть XX века. Тридцатичетырехлетний Скобельцын не избег увлечения модными в то время работами знаменитого ученого Комптона, который изучал взаимодействие рентгеновых лучей с веществом. И действительно, опыты Комптона были так заманчивы, что не могли не привлечь самого острого внимания, не могли не будить воображение настоящего ученого.
Американский физик, изучая взаимодействие рентгеновых лучей с веществом, получил возможность воочию убедиться в характере отношений, царящих в микромире.
Вот квант рентгеновых лучей, подобно невидимому бильярдному шару, со скоростью света налетает на электрон — в горой шар — и приводит его в движение. Столкнувшись, квант отдает электрону часть своей энергии.
Но сколько квант отдает и сколько оставляет себе? Было ясно, что величина переданной энергии зависит и от первоначальной энергии рентгеновского кванта и от направления, в котором полетит электрон.
Но Комптону никак не удавалось точно измерить энергию, получаемую электроном в отдельном акте взаимодействия. Ни он, ни другие ученые, бившиеся над этой задачей, не могли надежно оценить такую малую порцию энергии. Эту цель и поставил перед собой Скобельцын, решивший во что бы то ни стало проверить теорию Комптона прямым экспериментом.
Он хотел измерить величину отдельных атомов энергии и надежно подтвердить предположение о прерывистой природе электромагнитной энергии. Кроме того, электроны невидимы, а ученому хотелось увидеть весь акт собственными глазами. Но как это сделать?
Скобельцын решил воспользоваться для этого одним остроумным прибором. Прибором, который умел невидимое сделать видимым. Описание его работы похоже на парадокс: в приборе образуется туман, помогающий видеть. В современном исполнении вместе с системой автоматического управления камера Вильсона (так называется прибор) напоминает заряженное ружье, готовое выстрелить при нажатии курка. Курком служит невидимая частица, несущая на себе электрический заряд. Попав в камеру Вильсона, наполненную смесью аргона с парами воды и спирта, она разбивает на своем пути встречные молекулы, образуя ионы. И те невидимой цепочкой выстраиваются вдоль пути частицы. На этих ионах осаждаются капельки воды, прочерчивая четкий туманный след невидимой частицы.
Так Дмитрий Владимирович решил первую часть задачи: увидел след электрона. Но сказать что-либо о взаимодействии электрона с электромагнитным полем ученый по-прежнему не мог. Перебирая множество способов измерить силу взаимодействия таких невидимых глазу объектов, как электрон и отдельный квант энергии, Скобельцын, возможно, вспомнил увлекательную игру, называемую китайским бильярдом.
В наклонной доске сделаны лунки. Играющий, толкая шарик, лежащий в гнезде в нижней части доски, должен загнать его в лунку. Шарики, двигаясь по доске, описывают кривые линии. Чем медленнее начинает свое движение шарик, тем больше искривлен его путь. Если толкнуть шарик сильно, то есть сообщить ему большую начальную энергию, он покатится по более пологой кривой. Сила, искривляющая путь шарика, — это сила притяжения. Если доска китайского бильярда лежит горизонтально, то играть невозможно. Шарики будут двигаться по прямым, как в обычном бильярде, и в лунки не попадут — специальная загородка не позволяет толкать их прямо к лункам.