Боги Атлантиды
Шрифт:
В другой форме «фи» приближенно равно 1,618. Если вам нужно удлинить отрезок сообразно золотому сечению, просто умножьте его длину на 1,618.
Прежде чем вернуться к загадке Ренн-ле-Шато, еще немного математики. Существует названный по имени математика Фибоначчи ряд чисел, в котором каждое последующее число равно сумме двух предыдущих. Если начать с 0, следующим числом будет 1, затем 0+1 даст нам 1. Затем, если прибавить 1 к 1, мы получим 2. Прибавив 2 к 1, получим 3\И так далее (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…).
Вот еще один интересный факт. Если взять два соседних числа Фибоначчи и разделить меньшее на большее, чем больше
Именно числа Фибоначчи можно обнаружить в годичных кольцах деревьев, раковинах моллюсков, спиральных туманностях. Почему Богу нравится золотое число — никто не знает. Стоит упомянуть о том, что спираль Фибоначчи можно вывести из пентакля. Если часть внутренней пентаграммы поместить под прямым углом к «ногам» пентакля, можно описать спираль Фибоначчи, начав с конца короткой линии.
Спираль Фибоначчи
Кажется, Богу почему-то нравятся пентаграммы! Стоит добавить также, что, согласно Геродоту (в тексте, который мы немного подправим, устранив ошибку переписчика, делающую его абсурдным), золотое сечение можно найти в каждой грани пирамиды Хеопса.
Корнфорд объяснил Линкольну, что, изучая «Аркадских пастухов», искал одну из двух систем, которые постоянно использовали художники в ту эпоху. Первая — это система чисел, основанная на диалоге Платона «Тимей» (повествующем о создании вселенной) и очень популярная в эпоху Ренессанса. Вторая — куда более древняя геометрическая система, в основе которой лежит золотое сечение.
Корнфорд рассчитывал обнаружить на полотне Пуссена систему «Тимея», поскольку система золотого сечения считалась тогда ужасно старомодной. Он обнаружил следы системы чисел, но в общем и целом «Аркадские пастухи» базируются на золотом сечении. Кроме того, на картине скрыто множество пятиугольников.
Посмотрим вот на этот рисунок:
Пентаграмма в круге
Отношение каждой из пяти сторон пентаграммы (например, АВ) к ее хордам (скажем, АС) равно 1:1,618, или «фи».
Приглядевшись, Корнфорд обнаружил, что может нарисовать пентаграмму, которая выйдет за рамки картины:
Пентаграмма, расширенная за рамки «Аркадских пастухов»
Если коротко, в картине Пуссена зашифрован пентакль. В итоге Корнфорд сделал любопытное замечание: возможно, фраза «у Пуссена есть ключ…» относится к местности вокруг Ренн-ле-Шато, где Соньер искал свои сокровища?
Это замечание привело Линкольна к одному из его важнейших открытий.
Бросив взгляд на топографическую карту окрестностей Ренн-ле-Шато, он сразу отметил, что три крупнейших населенных пункта (Ренн-ле-Шато, тамплиерский
Нарисовав на карте треугольник, Линкольн измерил его стороны и изумился. Треугольник получился идеально равнобедренным, проще говоря, две из трех его сторон оказались равны. Замок Безю располагается в вершине треугольника, от замка Бланшфор и от Ренн-ле-Шато его отделяет одно и то же расстояние.
Вряд ли это совпадение. Очень давно кто-то заметил, что вершины трех холмов образуют равнобедренный треугольник, и решил, что они подходят для некоего тайного замысла.
Линкольн задал себе вопрос: может быть, в округе найдутся по случайности еще два холма, образующие вместе с тремя упомянутыми холмами пентаграмму? Он понимал, что такого не бывает…
Однако, изучив как следует карту, Линкольн был ошеломлен: еще два холма были расположены точно там, где и следовало. Восточный холм именовался Ла-Сулан, западный — Сер-де-Лозе. Если эти пять холмов соединить линиями, получалась идеальная пентаграмма.
Удивительная игра природы! Но на этом сюрпризы не закончились. Посмотрев в центр карты, Линкольн обратил внимание на еще один холм, Ла-Пик
Надо сказать, что хотя на карте Ла-Пик помещается точно в центре пентаграммы, на деле он расположен в 250 ярдах к юго-востоку от ее центра. Но этого и следовало ожидать. В конце концов, мы имеем дело с нерукотворным ландшафтом. Достаточно чудесно уже то, что Ла-Пик расположен почти в центре пентаграммы.
Итак, вот и главная тайна Ренн-ле-Шато: эта деревня — часть священного ландшафта. Не исключено, что именно поэтому здесь поселился Дагоберт (а его сын Сигиберт бежал сюда после убийства отца). Королевская кровь Меровингов соединилась с волшебным ландшафтом.
Я был обуреваем сомнениями, пока не прочел книгу Линкольна «Key to the Sacred Pattern» («Ключ к священному узору») и не осознал, что речь идет о взаправдашнем «волшебном ландшафте», который увидел Генри Линкольн.
Как ни странно, Плантар отказался подтвердить правоту Линкольна. Было видно, как он и Шеризе пришли в ужас, когда Линкольн обнаружил пятиугольники на пергаментах Соньера, однако распространяться на эту тему Плантар не желал. С другой стороны, когда Линкольн стал расспрашивать его о скрытых шифрах на пергаментах, Плантар сказал удивительную вещь: пергаменты — это «приманка», состряпанная его товарищем Шеризе. Но с какой целью? Для десятиминутного фильма, снятого несколько лет назад.
Разумеется, Линкольн никак не мог в такое поверить. Необычайная сложность шифра не оставляла сомнений в том, что мастер своего дела придумывал этот шифр на протяжении долгого времени.
Но зачем Плантару понадобилось пускать пыль в глаза? Было очевидно, что изначально Плантар и Приорат Сиона намеревались привлечь к тайне внимание общественности, чтобы Франция вспомнила о потомках Меровингов в случае, если она устанет быть республикой. Де Сед сразу сказал Линкольну: «Мы надеялись на то, что все это заинтересует человека вроде вас» [158] . Когда Линкольн вгрызся в тему и обнаружил множество пятиугольников, Плантар решил, что тот продвигается слишком быстро, и решил пойти на попятную.
158
Ibid.