Большая энциклопедия техники
Шрифт:
Электрический двигатель
Электрический двигатель – это машина, преобразующая электрическую энергию в механическую.
Электролитический конденсатор
Электролитический конденсатор – это электрический конденсатор, который состоит из двух проводников (обкладок), разделенных диэлектриком, состоящим из слоя окиси алюминия, нанесенного электролитическим путем на алюминиевую фольгу (анод), находящуюся в контакте с вязким раствором электролита, которым пропитана бумажная или марлевая прокладка.
Электролитические конденсаторы обладают униполярностью емкости, т. е. на выводе конденсаторов подается «плюс», а на корпус – «минус». Электролитический конденсатор имеет недостаточную стабильность по емкости при высоком tg B. Чаще всего данные конденсаторы имеют емкость до 2000 мкФ при отсутствии рабочего напряжения постоянного тока на единицу толщины диэлектрика, при тангенсе
Раздел 11. Гидротехника. Гидравлика. Вакуумная техника
Адсорбционный насос
Адсорбционный насос – вакуумный насос, в основе действия которого лежит явление адсорбции, т. е. откачиваемый газ адсорбируется на поверхности различных газопоглощающих веществ, например цеолита или геттера. Принцип действия адсорбционных насосов основан на способности предварительно лишенных газа твердых пористых тел поглощать газы и пары в основном за счет физической адсорбции.
Адсорбционные насосы нашли применение в системах безмасляной откачки как для создания предварительного разрежения, так и для получения и поддержания весьма низкого давления в высоковакуумных сосудах. В качестве поглощающих материалов (адсорбентов) могут применяться силикагели, алюмогели, цеолиты и активированные угли. Однако наибольшее распространение в качестве адсорбента получили цеолиты, представляющие собой алюмосиликаты щелочного или щелочно-земельного металла, природного или искусственного происхождения.
Пористую структуру и очень хорошие адсорбирующие свойства они приобретают после прокаливания; при этом кристаллическая решетка не разрушается, но после удаления кристаллизационной воды в цеолитах получаются равномерные по размерам тонкие поры. В поры могут проникать только те газы, диаметр молекул которых меньше размера пор, т. е. цеолиты обладают избирательным поглощением газов, это дало повод называть их молекулярными ситами. Например, цеолит марки СаА обладает порами с диаметром 0,5 нм, цеолит марки NaX – 0,9 нм. Напомним, что диаметры молекул основных атмосферных газов О2, N2, СО2 близки к 0,3 нм. Многочисленные поры образуют большую удельную поверхность. Так, у цеолита СаА поры имеют удельную поверхность, достигающую 600 м2/г.
Недостатком цеолитов, как, впрочем, и других адсорбентов, является то, что они плохо поглощают инертные газы, в частности аргон, содержание которого в воздухе достигает 1%, а также практически полная их неэффективность по отношению к газам с очень низкой точкой кипения (Н2, Не, Ne). С увеличением количества поглощенного газа при неизменной температуре адсорбента возрастает равновесное давление откачиваемого газа. Вместе с тем при одном и том же количестве поглощенного газа равновесное давление над поверхностью адсорбента тем меньше, чем ниже его температура. Поэтому в вакуумных адсорбционных насосах адсорбент обычно охлаждается жидким азотом и, реже, жидким водородом или гелием. В цилиндрический корпус, изготовленный из нержавеющей стали, вставлена перфорированная трубка. Кольцевое пространство между трубкой и корпусом заполнено адсорбентом. Для охлаждения адсорбента на насос снизу надевается сосуд Дьюара, в который заливают жидкий азот. После окончания откачки кран на входе насоса закрывается, сосуд Дьюара снимают, и насос отогревается до комнатной температуры. При этом вследствие обратного выделения газа из адсорбента давление в объеме насоса может превысить атмосферное. В связи с этим в верхней части насоса предусмотрен клапан (пробка), предохраняющий насос от разрушения при выделении газа из адсорбента. Такого отогрева с выпуском выделяющихся газов в атмосферу достаточно, чтобы насос был готов к следующему циклу откачки. Предельное остаточное давление адсорбционного насоса определяется адсорбционной емкостью адсорбента и зависит от количества поглощенного насосом газа. С целью получения низких предельных остаточных давлений рекомендуется осуществлять предварительную откачку сосуда до давления 104 Па водоструйным или механическим вакуумным насосом. Иногда в качестве насоса для форвакуумной откачки используют другой адсорбционный насос.
Основным достоинством адсорбционных насосов является полное отсутствие органических загрязнений откачиваемого сосуда.
Недостатки насосов – необходимость использования жидкого азота, периодическая регенерация и довольно значительное время охлаждения насоса.
Бустерный насос
Бустерный насос – это разновидность вакуумного насоса. Представляет собой пароструйный насос, который служит для того, чтобы создавать
Вакуумный насос
Вакуумный насос – разновидность насосов, которая применяется с целью удаления (т. е. откачивания) газа или пара из какого-то замкнутого объема или замкнутой системы – для создания в ней безвоздушного пространства, т. е. вакуума. Существует несколько типов вакуумных насосов, основными из которых являются механический, струйный, сорбционный и криогенный вакуумный насос. Рассмотрим более подробно виды вакуумных насосов.
1. Водокольцевые насосы – относятся к насосам объемного действия. При быстром вращении ротора, имеющего радиальные лопатки, вода отбрасывается к периферии корпуса и создает водяное кольцо приблизительно постоянной толщины, благодаря которому полости, образуемые лопатками ротора, герметично отделяются друг от друга. Так как ось вращения ротора смещена относительно оси цилиндрической расточки корпуса, то при вращении ротора объемы, отсекаемые лопатками, меняются, и, таким образом, создается разреженное пространство, обеспечивающее всасывание откачиваемого газа через впускное отверстие и сжатие газа перед выбросом его в атмосферу через выпускное отверстие.
Через выпускное отверстие удаляется также излишек воды, благодаря чему толщина водяного кольца остается постоянной во время работы насоса, несмотря на подвод холодной воды из сети, что необходимо для отвода тепла и для компенсации потерь воды в виде паров и брызг, выбрасываемых с откачиваемым газом. Предельное остаточное давление насоса определяется давлением паров воды и составляет примерно 2 x 103 Па при 293 К. Водокольцевые насосы применяют для откачки черновых трубопроводов централизованных форвакуумных систем, в сушильных установках, а также в качестве безмасляных насосов для форвакуумной откачки.
2. Механические вакуумные насосы с масляным уплотнением. Механические вакуумные насосы с масляным уплотнением относятся к насосам объемного действия и работают за счет периодического изменения объема рабочей камеры.
Механические насосы могут быть пластинчато-роторными, пластинчатостаторными и плунжерными (или золотниковыми). В цилиндрической расточке камеры насоса вращается эксцентрично расположенный ротор, в прорези которого свободно вставлены пластины с пружиной. При вращении ротора пластины скользят по внутренней поверхности цилиндра, и в камере насоса образуются две полости переменного объема, одна из которых – полость всасывания, другая – полость сжатия. Полость всасывания при вращении ротора увеличивает свой объем, и в нее поступает газ из впускного патрубка, связанного с откачиваемым сосудом. Объем полости сжатия, расположенный на выпускной стороне, уменьшается при вращении ротора, и в ней происходит сжатие газа. Эта полость соединена с клапаном. Когда давление газа в полости станет достаточным для открытия клапана, произойдет выхлоп. В процессе работы зазоры в роторном механизме уплотняются рабочей жидкостью насоса – маслом, благодаря чему обратное перетекание газа с выхода на вход становится достаточно малым. Масло заполняет и так называемые вредные пространства, из которых газ вытесняется при работе роторного механизма (например, объем под клапаном) и исключает их влияние, ведущее к повышению предельного остаточного давления. Одновременно масло обеспечивает смазку и частичное охлаждение механизма насоса. Масло поступает в камеру насоса через зазоры и сверления в корпусе из маслорезервуара, где оно находится под атмосферным давлением, а через выхлопной клапан вновь возвращается в маслорезервуар. Такую же роль масло выполняет и в других типах насосов с масляным уплотнением, принципы работы которых рассмотрены ниже. В пластинчато-статорном насосе пластина, разделяющая полости всасывания и сжатия, свободно скользит в прорези статора, прижимаясь к ротору под действием пружины (через рычаг). В плунжерном (золотниковом) насосе в цилиндрической камере корпуса насоса вращается эксцентрик с надетым на него плунжером. Газ из откачиваемого сосуда поступает в полость всасывания через окно в прямоугольной части плунжера, который скользит в направляющей, свободно поворачивающейся в гнезде корпуса. При повороте эксцентрика на некоторый угол от верхнего положения окно в прямоугольной части плунжера выходит из направляющей вниз, полость всасывания соединяется с впускным патрубком насоса и газ поступает в полость всасывания, непрерывно увеличивающую свой объем, пока окно не будет снова перекрыто. Одновременно в полости сжатия происходят сжатие и выталкивание газа через выхлопной клапан. Процесс напуска газа через окно напоминает работу золотникового распределительного устройства, поэтому насосы такого типа получили название золотниковые.