Чтение онлайн

на главную

Жанры

Большая энциклопедия техники

Коллектив авторов

Шрифт:

Устройство насосов. Диффузионные насосы подобно бустерным являются многоступенчатыми системами с соплами обращенного зонтичного типа.

В зависимости от рода рабочей жидкости, используемой в насосе, современные диффузионные насосы подразделяют на паромасляные и парортутные. В паромасляных насосах используют различные рабочие жидкости органического происхождения с низким давлением пара при нормальной температуре. Как правило, эти жидкости представляют собой смесь фракций с различным давлением пара и различной молярной массой.

В связи с этим следует отметить, что требования к рабочей жидкости паромасляных насосов, обеспечивающие наиболее благоприятные условия работы отдельных ступеней, различны. Так, для работы первой (входной) ступени, определяющей предельное остаточное давление и быстроту действия насоса, нужна рабочая жидкость с низким давлением пара при нормальной температуре (для получения низкого остаточного давления) и с высоким давлением пара при рабочей температуре

в кипятильнике (в связи с необходимостью создания паровой струи малой плотности для обеспечения большой скорости диффузии газа в струю). Для последней (выходной) ступени, определяющей наибольшее выпускное давление насоса, давление пара при нормальной температуре несущественно, давление пара при рабочей температуре кипятильника должно быть, по возможности, большим для получения струи высокой плотности.

С учетом этого в конструкциях современных паромасляных диффузионных насосов предусматривают осуществление фракционирования (разделения на фракции) рабочей жидкости в самом насосе. При этом тяжелые фракции с малым давлением пара направляются к первой ступени, а легкие фракции с большим давлением пара – к последней ступени. Такие насосы называют фракционирующими. Первые две ступени насоса – зонтичного типа, третья ступень эжекторная.

Для фракционирования рабочей жидкости в насосе разделены трубы, подводящие пар к ступеням, и на днище насоса установлен специальный лабиринт, образуемый фракционирующими кольцами. Конденсат масла, стекающий по стенке корпуса насоса в кипятильник, попадает через прорези в нижней части внешней пароподводящей трубы в пространство между внешней и внутренними трубами; проходя по лабиринту во фракционирующем устройстве, рабочая жидкость испаряется, обедняясь по мере движения к внутренней трубе легкими фракциями с высоким давлением пара. Утяжеленная часть рабочей жидкости, состоящая из фракций с низким давлением пара, поступает во внутреннюю трубу и направляется к первой, высоковакуумной ступени, а легкие фракции поступают во вторую и эжекторную ступени. Корпус насоса и маслоотражатель охлаждаются водой. В ряде случаев, например в передвижных установках, насосы с водяным охлаждением применять неудобно, тогда применяют насосы с принудительным воздушным охлаждением. Насос охлаждается вентилятором, установленным на корпусе; для более эффективного охлаждения на корпусе насоса предусмотрены ребра.

Основными конструкционными материалами таких насосов являются алюминий (детали паропровода, сопла) и низкоуглеродистая или коррозионностойкая сталь (корпус). Парортутные насосы характеризуются особыми качествами, что обусловлено свойствами ртути как рабочей жидкости. Во-первых, ртуть является однородной жидкостью, не изменяющей состава в кипятильнике насоса; поэтому в парортутных насосах отсутствуют фракционирующие устройства и все ступени насоса питаются паром одного состава. Во-вторых, ртуть химически активна, что обусловливает выбор конструкционных материалов насоса.

Парортутные насосы обычно изготовляют из стекла или коррозионно-стойкой стали. Один из наиболее распространенных, применяемых главным образом в лабораторных условиях, парортутных насосов – одноступенчатый стеклянный насос. Устройство насоса очень простое. Сопло из соображений простоты – цилиндрическое. Такие насосы с различными размерами и характеристиками обычно изготовляют сами потребители. Конфузор последней инжекторной ступени служит одновременно патрубком, соединяющим насос с выходной дисковой ловушкой. В связи с тем, что давление пара pтути при нормальной температуре велико (0,1 Па), для получения высокого вакуума в откачиваемом сосуде между парортутным насосом и сосудом необходимо устанавливать охлаждаемую до низкой температуры ловушку. При использовании охлаждаемой жидким азотом ловушки парортутный насос позволяет получить в хорошо обезгазенной при 723 К системе предельное остаточное давление 10– 10 Па. Токсичность паров (необходимо оборудовать специальные помещения для работы с ртутью и соблюдать меры предосторожности, исключающие повышение концентрации паров ртути в рабочих помещениях). Ртуть, предназначенная для работы в насосах, должна быть хорошо очищена. Для высоковакуумных насосов применяют дистиллированную ртуть марок Р-1 и Р-2. Указанные недостатки ртути, в особенности токсичность паров, существенно ограничивают возможность ее использования в качестве рабочей жидкости в насосах.

Ртутные насосы используют, главным образом, для откачки систем, в которых пары ртути являются рабочей средой (ртутные выпрямители, лампы), и установках, в которых необходима высокая чистота рабочей среды (в масс-спектрометрах, сверхвысоковакуумных системах термоядерных установок и т. д.).

Высоковакуумные масла не имеют перечисленных недостатков. Они химически инертны, неядовиты и имеют низкое давление пара при нормальной температуре, позволяющее получать предельное остаточное давление 10– 4—10– 5 Па и ниже без применения низкотемпературных ловушек. В высоковакуумных паромасляных насосах применяют в основном четыре типа рабочих жидкостей: минеральные масла, кремнийорганические соединения, сложные эфиры органических спиртов и кислот и

синтетические углеводородные жидкости. Минеральные масла получают путем вакуумной дистилляции продуктов переработки нефти. Это неоднородные по составу жидкости, представляющие собой смеси углеводородов различной молекулярной массы с различной температурой кипения, отличающиеся низким давлением пара при нормальной температуре. Насосы, работающие на этих маслах, создают предельное остаточное давление 10– 4—10– 6. Минеральные масла имеют, как правило, достаточно высокую термостойкость и сравнительно невысокую термоокислительную стойкость, при окислении образуют смолистые налеты на внутренних поверхностях насоса. Несмотря на высокую термическую стабильность минеральных масел, состав остаточных газов в хорошо тренированном насосе в значительной мере определяется продуктами разложения масла в кипятильнике насоса. Несмотря на малую термоокислительную стойкость и образование летучих углеводородов, минеральные масла получили самое широкое распространение благодаря относительно невысокой (по сравнению с другими рабочими жидкостями) стоимости (1,4—4,5 руб./кг).

Отечественная промышленность выпускает высоковакуумные минеральные масла, являющиеся продуктами дистилляции медицинского вазелинового масла. Самое дешевое масло получают путем однократной разгонки, а масло ВМ-5 путем двукратной разгонки вазелинового масла. Масло ИМ-8 обладает более однородным составом и более высокой термической стойкостью, чем масло ВМ-1. Предельное остаточное давление насоса при работе на масле ВМ-5 на порядок ниже, чем при работе на масле ВМ-1, причем достижения остаточного давления в 1,5—2 раза меньше. Следует заметить, что характеристики минеральных масел зависят от сорта нефти, используемой в качестве исходного сырья. Синтетические углеводородные жидкости являются более дорогими по сравнению с минеральными углеводородными жидкостями, но для их производства не требуется дефицитного сырья – нефти; состав и характеристики их точно воспроизводимы.

Отечественной промышленностью освоено производство синтетической углеводородной жидкости на основе алкилнафталинов. Эта жидкость имеет низкое давление пара при нормальной температуре, позволяющее получать предельное остаточное давление диффузионного насоса 10– 6—10– 7 Па; обладает более высокой термоокислительной стойкостью, чем минеральные масла. Кремнийорганические жидкости – полисилоксановые соединения, молекулы которых состоят из чередующихся атомов кремния и кислорода с присоединенными углеводородными радикалами по свободным связям кремния. Благодаря сильной связи между кремнием и кислородом кремнийорганические жидкости обладают высокой термической и термоокислительной стойкостью. Некоторые жидкости обладают низким давлением пара при нормальной температуре и позволяют получать предельное остаточное давление диффузионного насоса до 10– 4 Па. В диффузионных насосах, предназначенных для получения сверхвысокого вакуума, применяют кремнийорганические жидкости ФМ-1 (пента-фенилтрисилоксан) и ФМ-2 (гексафе-нилтетрасилоксап), обладающие ультранизким давлением пара при нормальной температуре 10– 9—10– 11 Па и позволяющие создавать предельное остаточное давление диффузионного насоса ниже 10– 7 Па без использования ловушек, охлаждаемых жидким азотом. Эфиры, используемые в качестве рабочих жидкостей в отечественных диффузионных насосах, представляют собой полифениловые соединения, отличающиеся исключительно высокой термической стабильностью.

Зависимость быстроты действия от температуры откачиваемого газа. Быстрота действия насоса прямо пропорциональна корню квадратному из абсолютной температуры откачиваемого газа. Изменения температуры откачиваемого газа, наблюдаемые обычно на практике, незначительно влияют на быстроту действия насоса. Так, чтобы быстрота действия увеличилась на 10%, температуру откачиваемого газа следует повысить с 293 до 353 К.

Зависимость быстроты действия от рода рабочей жидкости. Если в диффузионный насос заливать различные рабочие жидкости и подводить одинаковую мощность для подогрева, то быстрота действия насоса будет различной. Зависимость быстроты действия насоса от рода рабочей жидкости можно объяснить тем, что жидкости имеют различные термодинамические и физико-химические характеристики, обусловливающие различные режимы работы кипятильники, истечения пара из сопла и соответственно различные структуры струй, а также различные количественные соотношения при взаимодействии с молекулами пара.

Поскольку число факторов, обусловливающих влияние рабочей жидкости на работу насоса, велико, зависимость быстроты действия от рода рабочей жидкости можно выразить простым соотношением, позволяющим проследить характер изменения быстроты действия от рода рабочей жидкости. Кроме того, для многих рабочих жидкостей (вакуумных масел) неизвестны некоторые важные характеристики, например показатель адиабаты k, обусловливающий зависимость режима истечения пара из сопла от рода рабочей жидкости. В связи с этим теоретическое исследование зависимости быстроты действий от рода рабочей жидкости затруднено.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Книга пяти колец. Том 4

Зайцев Константин
4. Книга пяти колец
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Книга пяти колец. Том 4

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Темный Охотник 2

Розальев Андрей
2. Темный охотник
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 2

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Право налево

Зика Натаэль
Любовные романы:
современные любовные романы
8.38
рейтинг книги
Право налево

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7