Большая энциклопедия техники
Шрифт:
В струйных аппаратах при наличии необратимых потерь на удар при взаимодействии потоков личными скоростями имеет место увеличение энтропии потока по сравнению с обратимым смешением, что приводит к изменению давления смешанного потока. Применительно к пароводяным инжекторам реализована на практике возможность получения давления, превышающего давление действующих сред. Эта возможность существует благодаря балансу работы, получаемой из рабочего пара и сжатия инжектируемой воды. В последнее время в связи с разработкой магнитогидродинамического способа получения электроэнергии, а также тепловых циклов с новыми рабочими телами усилился интерес к применению в этих установках инжекторов в качестве струйных конденсаторов и насосов. Появились многочисленные исследования этих аппаратов, направленные на повышение их КПД путем снижения потерь в элементах проточной части инжектора, изучения условий их запуска и т. д. Многие из этих работ обобщены. Достаточно сложные конструкции промышленных инжекторов подробно описаны.
Во всех конструкциях подвод инжектируемой воды осуществляется через узкую кольцевую щель, окружающую рабочее сопло, с тем чтобы вода поступала в камеру смешения с большой скоростью, направленной параллельно скорости
Это представление хорошо согласуется с опубликованными теоретическими и экспериментальными исследованиями конденсации струи пара в пространстве, заполненном жидкостью. При поступлении воды в камеру смешения ограниченного сечения скорость воды возрастает, а давление ее соответственно снижается. Если р больше давления насыщенного пара при определенной температуре, то в камере смешения движется жидкость и процесс в камере смешения и диффузоре аналогичен процессу в водоструйном насосе. В этом случае в камере смешения происходит повышение давления и за счет выравнивания профиля скоростей, имеющего в начале камеры смешения значительную неравномерность. Затем в диффузоре давление воды повышается до с. При этом режимные или конструкционные факторы оказывают на характеристику пароводяного инжектора такое же влияние, как и на характеристику водоструйного насоса.
Существенные отличия наступают при малых коэффициентах инжекции. При снижении расхода инжектируемой воды и неизменном С-плоде рабочего пара температура воды повышается до величины, предшествующей температуре насыщения при давлении в камере смешения, и наступает срыв работы инжектора из-за недостатка воды и конденсации всего поступающего рабочего пара. Этот режим определяет минимальный коэффициент инжекции.
При увеличении коэффициента инжекции, когда расход инжектируемой воды в результате снижения противодавления увеличивается, температура воды в камере смешения падает. Одновременно из-за изменения скорости воды в камере смешения снижается давление.
При увеличении расхода инжектируемой воды до определенной границы давление во входном сечении камеры смешения понижается до давления насыщения при температуре нагретой воды t.
Снижение противодавления не приводит к увеличению рапида, а дальнейшее падение давления в камере смешения невозможно и, следовательно, не может увеличиться перепад давлений, определяющий расход инжектируемой воды. Понижение противодавления в этом случае приводит лишь к вскипанию воды в камере смешения. Этот режим аналогичен кавитационному режиму водоструйного насоса. Вскипание воды в камере смешения обусловливает, таким образом, максимальный (предельный) коэффициент инжекции. Следует отметить, что именно этот режим является рабочим для питательных инжекторов. Он позволяет объяснить обнаруженную из опытов независимость производительности инжектора от противодавления при работе на кавитационном режиме. Ниже приводится вывод основных расчетных уравнений для пароводяного инжектора с простейшей цилиндрической формой камеры смешения.
Уравнение характеристики. Уравнение импульсов можно написать в следующем виде: f2 (GpWpi + GKWHI) – (GP + GH) W3 = fp1 + fnl, где p1 – давление пара в выходном сечении рабочего сопла; Wpi – действительная скорость пара в выходном сечении сопла; Wpi – скорость пара при адиабатном истечении; WHI – скорость инжектируемой воды в кольцевом сечении fnl в плоскости выходного сечения сопла; W3 – скорость воды в конце камеры смешения. Примем следующие допущения:
1) сечение в плоскости выходного сечения сопла настолько велико, что скорость инжектируемой воды в этом сечении близка к нулю и количеством движения инжектируемой воды GKWHI по сравнению с количеством движения рабочего пара GpWpi . можно пренебречь;
2) сечение приемной камеры в плоскости выходного сечения рабочего сопла значительно превышает сечение
Снижение давления от р1 до р2 происходит в основном в конце входного участка камеры смешения. Когда выходное сечение сопла близко к значению сечения камеры смешения, давление после инжектора не зависит от давления инжектируемой воды. Отношение сечений оказывает на характеристики пароводяного инжектора такое же влияние, как и на характеристики других типов струйных аппаратов: пароструйных компрессоров, водоструйных насосов. Увеличение показателя приводит к увеличению коэффициента инжекции и снижению давления воды после инжектора р. Как уже отмечалось, в пароводяном инжекторе максимальный и минимальный коэффициенты инжекции ограничиваются условиями вскипания воды в камере смешения. Вскипание воды в камере смешения станет ниже давления насыщения (кавитации) при температуре воды в камере смешения tz. Оба эти давления (р1 и р2) зависят при заданных параметрах рабочего пара и инжектируемой воды и размерах инжектора от коэффициента инжекции u. Температура воды в камере смешения определяется из теплового баланса. При этой температуре по таблицам насыщенного пара определяется соответствующее значение рк. Давление воды в начале цилиндрической камеры смешения р2 зависит от скорости, которую получит масса инжектируемой воды до поступления в камеру смешения в результате обмена импульсами между инжектируемой и рабочей средами. Если считать, что после конденсации рабочего пара образуется струя рабочей жидкости, движущаяся с очень большой скоростью и занимающая вследствие этого весьма малое сечение, а также что основной обмен импульсами между этой струей и инжектируемой водой происходит в цилиндрической камере смешения, то средней скоростью, которую приобретает инжектируемая вода при давлении р, можно пренебречь. В этом случае давление воды в начале камеры смешения может быть определено по уравнению Бернулли. Снижение давления инжектируемой воды при неизменной ее температуре (t = const) приводит к сокращению рабочего диапазона инжектора, так как при этом сближаются значения инжекции. К аналогичному эффекту приводит повышение давления рабочего пара. При неизменном давлении и температуре t инжектируемой воды увеличение давления рабочего пара до определенного значения приводит к срыву работы инжектора. Так, при УД = 1,8, давлении инжектируемой воды = 80 кПа и ее температуре t = 20 °С срыв работы инжектора наступает при повышении давления рабочего пара р до 0,96 МПа, а при t = 40 °С давление рабочего пара не может быть поднято выше 0,65 МПа. Таким образом, имеют место зависимости предельных коэффициентов инжекции от основного геометрического параметра инжектора, а также от условий работы.
Достижимые коэффициенты инжекции. Для того чтобы определить достижимый коэффициент инжекции при заданных условиях работы инжектора: параметрах рабочего пара р и t, параметрах инжектируемой воды и требуемом давлении воды после инжектора, следует решить совместно уравнение характеристики и уравнение предельного коэффициента инжекции. Существенное влияние оказывает положение сопла на предельный коэффициент инжекции: чем меньше расстояние сопла от камеры смешения, тем меньше предельный коэффициент инжекции. Это можно объяснить тем, что при малых расстояниях сопла от камеры смешения рабочий пар не успевает полностью конденсироваться в приемной камере и занимает часть входного сечения камеры смешения, уменьшая тем самым сечение для прохода воды. При увеличении расстояния сопла от камеры смешения предельный коэффициент инжекции увеличивается, но это увеличение постепенно замедляется. При максимальном расстоянии сопла от камеры смешения (36 мм) предельный коэффициент инжекции близок к расчетному. Можно предполагать, что дальнейшее его увеличение не приведет к заметному увеличению предельного коэффициента инжекции.
Такая же закономерность наблюдалась при различных давлениях рабочего пара и различных диаметрах выходного сечения сопла. Исходя из полученных результатов, все опыты с другими камерами смешения и рабочими соплами проводились при максимальном расстоянии сопла от камеры смешения. Лишь при р = 0,8 МПа и показателе 1,8 повышение давления инжектируемой воды меньше р четного, что объясняется, по-видимому, тем, что при этих условиях режим работы инжектора близок к срыву. Действительно, при 1,8 и р = 0,8 МПа расчетное минимальное давление инжектируемой воды составляет около 0,6 атм. При 1,8 и р = 0,8 МПа давление инжектируемой воды близко к минимальному. На этом режиме инжектор работ с предельным коэффициентом инжекции, почти равным расчетному, но не создает расчетного повышения давления инжектируемой воды. Такое явление наблюдалось и в других опытах, когда инжектор работал в режиме, близком к срывному. Для того чтобы при этих условиях реализовать теоретически возможные повышения давления воды в инжекторе, необходимо, по-видимому, более тщательное выполнение проточной части, точный выбор расстояния между камерой смешения и т. п. При расчете струйных аппаратов для пневмотранспорта абсолютное давление р обычно равно 0,1 МПа, если только в приемной камере аппарата не создается искусственно вакуум. Значение , как правило, равно потере давления в сети после аппарата. Эта потеря давления зависит, главным образом, от диаметра трубы трубопровода после струйного аппарата и плотности транспортируемой среды. Для расчета параметров потока в характерных сечениях струйных аппаратов для пневмотранспорта могут быть использованы те же уравнения, что и для газоструйных инжекторов. При сверхкритической степени расширения рабочего потока основные размеры рабочего сопла рассчитываются по тем же формулам, что и для струйных компрессоров. При докритической степени расширения рабочие сопла имеют коническую форму, а сечение сопла рассчитывается. Расход через сопло при докритической степени расширения определяется по формулам, как и определяется осевой размер аппарата.