Чтение онлайн

на главную

Жанры

Большая энциклопедия техники

Коллектив авторов

Шрифт:

Быстрота действия диффузионных насосов уменьшается как в области высоких давлений, так и в области предельного остаточного давления. Уменьшение быстроты действия диффузионного насоса в области высоких давлений объясняется возрастанием выпускного давления (из-за ограниченности быстроты действия форвакуумного насоса) и нарушением работы паровой струи. Уменьшение быстроты действия в области предельного остаточного давления связано с возрастающим влиянием заноса газа в верхнее сопло и противодиффузии газа через струю. Состав остаточных газов паромасляного диффузионного насоса представляет собой широкий набор углеводородных соединений с массовыми числами до 250. С помощью эффективных ловушек из состава остаточных газов могут быть исключены практически все углеводородные соединения. Обратный поток паров масла, поступающий в единицу времени с единицы площади сечения впускного патрубка диффузионного насоса, работающего без ловушки, составляет обычно 1—5 мг/(ч x см2). С помощью эффективных ловушек эта величина может быть уменьшена до 1 x 10– 5 – 1 x 10– 6

мг / / (ч x см2). Резкие непродолжительные увеличения обратного потока паров масла имеют место в периоды запуска и остановки насоса, когда паровая струя еще не сформировалась или уже потеряла форму. Часто диффузионный насос с затвором, маслоотражателем и ловушкой выполняется как единая вакуумная установка, которая называется вакуумным агрегатом.

Практические указания по эксплуатации. Струйные насосы должны эксплуатироваться только с рекомендованной рабочей жидкостью, для которой заводом-изготовителем (разработчиком) выбраны критические проходные сечения сопл и режим эксплуатации. Эксплуатационные мероприятия сводятся в основном к сохранению количества и качества рабочей жидкости в насосе и к мерам защиты откачиваемого сосуда от чрезмерного проникновения в него паров масла. Для этого следует придерживаться обычной последовательности операций при запуске насоса: откачать пароструйный насос форвакуумным насосом, включить подачу охлаждающей воды, включить нагреватель (при этом возможно небольшое увеличение давления за счет газовыделения из разогревающегося масла); после запуска насоса (через 30—60 мин в зависимости от его размеров) охладить азотную ловушку и медленно открыть затвор или кран на входе насоса (при этом давление в откачиваемом сосуде должно быть не выше рекомендованного начального давления). Остановка насоса всегда начинается с закрытия затвора, затем размораживается азотная ловушка и после этого выключается нагреватель. Форвакуумная откачка и водяное охлаждение прекращаются после охлаждения кипятильника, которое можно ускорить, сняв нагреватель и обдувая кипятильник воздухом. В некоторых насосах в днище кипятильника имеются каналы водяного охлаждения, что значительно сокращает время охлаждения насоса.

Рассмотрим аварийные ситуации. При разгерметизации откачиваемого сосуда или прекращении подачи охлаждающей воды должен быть перекрыт затвор на впуске насоса и отключен нагреватель; форвакуумная откачка при этом продолжается. При аварийной остановке форвакуумного насоса должны быть перекрыты форвакуумный кран и затвор на впуске, а также отключен нагреватель. При выходе из строя нагревателя должен быть перекрыт затвор на впуске. Работа нагревателя при повышенном давлении в насосе (например, если забыли включить форвакуумную откачку или при аварии в форвакуумной системе некоторое время не был отключен нагреватель) ведет к перегреву рабочей жидкости. В таких случаях следует до начала форвакуумной откачки дать рабочей жидкости несколько остыть, отключив нагреватель, в противном случае бурное вскипание перегретой рабочей жидкости приводит к сильным выбросам ее из насоса. Некоторый вынос рабочей жидкости в форвакуумную коммуникацию происходит при прохождении через разогретый насос больших потоков газа.

Турбомолекулярные насосы

Принцип действия турбомолекулярного насоса основан на сообщении молекулам разреженного газа направленной дополнительной скорости быстро движущейся твердой поверхностью.

Рабочий механизм насоса образован роторными и статорными дисками, имеющими радиальные косые пазы – каналы, боковые стенки которых наклонены относительно плоскости диска под углом 40—15°; причем пазы статорных дисков расположены зеркально относительно пазов роторных дисков. Между статорными дисками и валом ротора и между роторными дисками и корпусом насоса имеются зазоры. При молекулярном режиме течения газа в насосе, т. е. при давлениях ниже 10– 1—1 Па, такая система подвижных и неподвижных пазов обеспечивает преимущественное прохождение молекул газа в направлении откачки. Действительно, молекула газа, прошедшая через статорный паз (или отразившаяся от статорного диска и движущаяся к роторному диску слева), попав в паз роторного диска, имеет большую вероятность пройти через него, так как боковая стенка роторного паза уходит с пути молекулы. Стенка не может ее нагнать, в то время как такая же молекула, подходящая к роторному диску справа, т. е. против направления откачки, вошедшая в паз, будет с большой вероятностью задержана стенкой роторного паза и отражена обратно в направлении откачки. Молекулы, отраженные роторным диском, кроме тепловой скорости, приобретают дополнительную скорость. Эта скорость равна окружной скорости роторного диска и направлена параллельно оси насоса. Благодаря соответствующему углу наклона боковых стенок статорного паза здесь также обеспечивается преимущественное прохождение молекул в направлении откачки.

Таким образом, каждая ступень, состоящая из роторного и статорного дисков, создает перепад давлений. Причем наибольшее отношение давлений по обе стороны ступени (степень сжатия) равно приблизительно отношению вероятностей перехода молекул через паз в направлении откачки и в обратном направлении, а наибольшая возможная быстрота ступени пропорциональна разности 1– 2 – 2– 1. В области достигнутых окружных скоростей в современных

промышленных турбомолекулярных насосах разность 1– 2 – 2– 1 характеризуется почти линейной зависимостью, т. е. эффективность насоса возрастает с ростом окружной скорости ротора и с уменьшением наиболее вероятной скорости молекул. Расчеты показывают, что максимальная быстрота действия достигается при угле наклона пазов около 30°. С другой стороны, для получения достаточно высокой степени сжатия в одной ступени (от 3 до 5) угол наклона паза должен быть не более 20°.

Поэтому в современных насосах высоковакуумные ступени выполняются с углом наклона 35°, а все остальные – 20°. Для «быстрых» молекул (легких газов) окружная скорость ротора является относительно меньшей, чем для «медленных» молекул (тяжелых газов), поэтому коэффициент сжатия ступени заметно меньше для легких газов. Каждый роторный и статорный диск создает небольшой перепад давлений, однако благодаря большому количеству последовательных ступеней (30—40) обеспечивается высокий коэффициент сжатия насоса в целом (102—103 по водороду, 107—109 по азоту). Так как турбомолекулярные насосы имеют очень высокий коэффициент сжатия для тяжелых газов, то во время работы эти насосы являются надежным барьером против проникновения тяжелых молекул масла из форвакуумной полости насоса.

Конструкции и характеристики. Высокая надежность насосов достигается тем, что они приводятся во вращение от высокочастотного электродвигателя, ротор которого расположен в форвакуумной полости на общем валу с ротором насоса. Таким образом, исключается вакуумный ввод вращения, манжеты которого подвержены износу. Ротор вращается с частотой около 18 000 об/мин и перед сборкой насоса подвергается тщательной динамической балансировке, что обеспечивает работу насоса без шума и вибраций, а также долговечность подшипников.

Смазка подшипников осуществляется маслонасосом, имеющим небольшой собственный электродвигатель. В случае аварийного отключения электроэнергии подача смазки прекращается, а ротор турбомолекулярного насоса способен по инерции вращаться еще 40—60 мин. Однако это не ведет к повреждению подшипников, имеющих текстолитовые сепараторы. Небольшой поток воды используется для охлаждения статорной обмотки электродвигателя и торцевых крышек, отделяющих подшипники от полости на выходе последнего форвакуумного диска насоса с тем, чтобы уменьшить в этой области давление паров масла. Основным остаточным газом является водород (массовое число 2). Кроме того, содержится небольшое количество паров воды (массовое число 18), смесь окиси углерода и азота (массовое число 28) и двуокиси углерода (массовое число 44). Таким образом, в остаточных газах тяжелые углеводородные соединения не обнаруживаются, и турбомолекулярные насосы с достаточным основанием считаются безмасляными средствами откачки, хотя в их форвакуумных полостях присутствуют пары масла, используемого для смазки подшипников насоса, и пары масла, попадающие туда из механического вакуумного насоса. Быстрота действия остается постоянной в широком диапазоне давлений – от 10– 1 Па, когда начинает сказываться изменение режима течения газа через диски насоса, до 10– 6 Па, когда на быстроту действия оказывает влияние водород, выделяющийся из насоса и перетекающий со стороны форвакуумной полости насоса. Предельное остаточное давление турбомолекулярных насосов составляет 10– 8—10– 7 Па. Достоинства турбомолекулярных насосов – быстрый запуск, малая селективность при откачке различных газов, отсутствие паров масла и продуктов его разложения в остаточной атмосфере, возможность получения сверхвысокого вакуума без использования ловушек на входе. Механизм насоса не повреждается при прорывах атмосферного воздуха. Все это обусловило их широкое применение во многих отраслях науки и промышленности.

При эксплуатации турбомолекулярных насосов необходимо контролировать поступление масла к подшипникам (для чего в насосе предусмотрены смотровые окна) и отсутствие шумов, появление которых свидетельствует об износе подшипников. Недопустима длительная выдержка остановленного турбомолекулярного насоса под форвакуумным давлением (ниже 10 Па), так как при этом пары масла могут проникнуть со стороны форвакуума через роторный механизм на сторону высокого вакуума.

Остановленный турбомолекулярный насос должен быть заполнен осушенным воздухом или азотом до атмосферного давления через кран, имеющийся в форвакуумном патрубке насоса. Небольшое количество паров масла, попавшее на вход турбомолекулярного насоса, обычно легко удаляется прогревом корпуса в области впускного патрубка до 100—120 °С при работающем турбомолекулярном насосе. Большую опасность для работы насоса представляет попадание в него твердых частиц. При наличии такой опасности во входном патрубке насоса должна быть установлена металлическая сетка с размерами ячейки 1 x 1 мм.

Эжектор

Эжектор (от фр. ejecteur, а оно, в свою очередь, от ejecter – «выбрасывать») – устройство, внутри которого осуществляется передача кинетической энергии от среды, которая движется с большей скоростью, к другой среде. При этом такая передача энергии осуществляется при смешении сред. Эжекторы нашли широкое применение в химической, а также в нефтеперерабатывающей промышленности, где они используются в качестве смесителей. Применяются эти струйные насосы с целью отсасывания газа, пара или жидкости.

Поделиться:
Популярные книги

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Дайте поспать! Том III

Матисов Павел
3. Вечный Сон
Фантастика:
фэнтези
5.00
рейтинг книги
Дайте поспать! Том III

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений