Большая энциклопедия техники
Шрифт:
Кинопроекционный объектив
Кинопроекционный объектив – оптический прибор, увеличивающий и проецирующий изображение кадра на экран. Основная характеристика кинопроекционного объектива – разрешающая способность – это число линий, которые четко различаются на 1 мм тест-объекта. Различные конструкции кинопроекционных объективов имеют разрешающую способность около 100 линий на 1 мм в центре кадра, около 60 линий на 1 мм на краю кадра. Кинопроекционные объективы имеют светопропускающий коэффициент 0,8—0,85, обеспечивают освещенность экрана 0,6—0,7. Технические характеристики кинопроекционных объективов – это фокусное расстояние, относительное отверстие,
Обычные: фокусное расстояние 50—180 мм; относительное отверстие 1 : 2 и 1 : 2,5; угол поля изображения 30—8°.
Широкоэкранные: фокусное расстояние 80—140 мм; относительное отверстие 1 : 2.
Широкоформатные: фокусное расстояние 70—120 мм; относительное отверстие 1 : 2; угол поля изображения 42—25°.
Узкопленочные (16 мм): фокусное расстояние 35—50 мм, 65 мм; относительное отверстие 1 : 1,2 и 1 : 1,4; угол поля изображения 20—11°.
Любительские (8 мм): фокусное расстояние 18 мм, 65 мм; относительное отверстие 1 : 1,4; угол поля изображения 19°.
Компендиум
Компендиум – вспомогательное устройство киносъемочного аппарата, защищающее объектив от засвечивания посторонним светом. Устройство включает бленду светозащитную и держатель светофильтров, и дает возможность устанавливать несколько светофильтров и оптических насадок перед объективом.
Контргрейфер
Контргрейфер – устройство кинопроекционного аппарата. Устанавливает с большой точностью кинопленку в кадровом окне фильмового канала после ее шагового перемещения.
Космическое телевидение
Космическое телевидение – это телевизионная система, способная передавать изображения космических объектов, находящихся на различных расстояниях от Земли.
П. Ф. Брацлавец считается отцом космического телевидения. В 1957 г. в НИИ, где работал Брацлавец, поступил заказ на изготовление телеаппаратуры, способной снимать поверхность Луны и передавать снимки на Землю. Исследователями была разработана не совсем удачная схема выполнения заказа, и тогда Брацлавец предложил систему телевидения с малой частотой кадров. Он создал фотокомплекс «Енисей», за разработку которого был удостоен Ленинской премии в 1960 г. В честь отца космического телевидения была учреждена медаль, ведь благодаря Петру Брацлавцу впервые получили снимки обратной стороны Луны. Одной из первых эту медаль получила ученая Мария Мамырина, работавшая над камерой, установленной в кабине Юрия Гагарина.
7 октября 1959 г. советская автоматическая станция «Луна-3» получила фотографию обратной стороны Луны. Ленинградские ученые, руководствуясь техническим заданием С. Королева, разработали за три года до запуска «Луны-3» специальное фототелевизионное устройство. Одним из ученых, выполняющих задание Королева, был П. Брацлавец.
Космическое телевидение, созданное так недавно, уже имеет собственные вехи исторического развития. В 1961 г. с его помощью произвели первую съемку космонавта в открытом космосе. Через пять лет высокоорбитальным аппаратам удалось передать изображение полного диска Земли, которое сегодня можно встретить в каждом учебнике по географии и другим подобным предметам.
Космическое телевидение было использовано также в 1962 г. На корабль «Восток-3», который находился под управлением А. Николаева, установили телевизионную камеру. Передачу информации могли наблюдать только специалисты из Центра управления полетами. А уже через семь лет вся планета смогла наблюдать первый выход человека на Луну.
В 1975 г.
В 1959—1983 гг. непрерывно разрабатывались новые и совершенствовались старые фототелевизионные устройства: «Марс-1», «Зонд-3», «Океан-О», «Венера-13» и др. Чтобы съемка проходила удачно, применялись устройства для проведения химико-фотографических процессов в бортовых условиях, защиты фотопленки от космической радиации и т. д.
Сигналы изображения формировались специальными оптико-механическими устройствами (камерами), проводящими топографические съемки Луны и других космических объектов. Оптико-механические устройства входили в состав комбинированной телевизионной системы, управляющей луноходами. Кроме таких устройств, телевизионную систему составляла электронная система МКТВ, управляющая двигающимся луноходом.
Со временем космическое телевидение совершенствовалось, вырабатывались новые технологии, создавались необходимые приборы. Одним из таких нововведений была панорамная телевизионная камера. Она работала в обычных и экстремальных ситуациях на поверхности Венеры. Полученные цветные панорамы планеты Венера пополнили неоценимую сокровищницу космических успехов и достижений.
Сравнительно недавно в космических научных кругах стали применять оптико-электронные устройства. В них соединяются наклонное зондирование и сканирование, за счет которых ученым и космонавтам стало возможным проводить мониторинг суши и водных поверхностей.
Уже более 10 лет прошло со дня запуска японского научного космического аппарата Solar-A (Yohkoh). Этот аппарат сделал около 6 млн снимков Солнца, которые показывают нагрев солнечной короны, развитие вспышек на Солнце и роль магнитного поля в возникновении солнечных вспышек. На основе этих космических съемок было проведено около 600 научных конференций и 100 защит диссертаций.
В последнее время на пике популярности находятся так называемые космические туристические полеты.
Для развития космонавтики это дополнительный экономический ресурс, причем немалый в своем объеме, для космических туристов – незабываемое и ни с чем не сравнимое приключение. И, конечно же, не последнее место в организации и проведении подобных полетов занимает космическое телевидение.
Лампа бегущей волны
Лампа бегущей волны – это электровакуумный прибор, с помощью которого усиливаются электромагнитные колебания СВЧ. Бегущая электромагнитная волна, взаимодействуя и двигаясь в одном направлении с электронным потоком, приводит к усилению колебаний СВЧ. Лампа бегущей волны используется как в приемных, так и в передающих устройствах. Лампа предназначена для умножения частоты колебаний, их преобразования и т. д.
Впервые электровакуумный прибор, который можно назвать предком лампы бегущей волны, запатентовал в 1936 г. американский ученый А. Гаев. Собственно лампа бегущей волны появилась спустя семь лет, в 1943 г., когда она была предложена другим американским инженером – Р. Компфнером. После этого лампами начали заниматься многие исследователи, такие как Дж. Пирс, в 1947 г. первым опубликовавший свой теоретический труд, посвященный лампе бегущей волны.