Большая Советская Энциклопедия (АЛ)
Шрифт:
Приближённое вычисление корней алгебраических уравнений является важной задачей вычислительной математики, и к настоящему времени разработано огромное число приёмов её решения, в частности с использованием современной вычислительной техники. Но математика состоит не только из описания способов вычисления. Не менее важна — даже для приложений — другая сторона математики: уметь чисто теоретическим путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебраических уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положительные и отрицательные числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действительных чисел; например, уравнение x2 + 2 = 0 не может быть удовлетворено ни при каком положительном или отрицательном х, т. к. слева всегда окажется положительное число, а не нуль. Представление решения в виде
не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицательного числа. Именно
Если допускать и комплексные числа, то оказывается, что любое уравнение n- й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэффициентами. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в. французским математиком А. Жираром, но первое строгое доказательство её было дано в самом конце 18 в. К. Гауссом , с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство основной теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математической науки в целом.
Если xi — один из корней алгебраического уравнения
a xn + a1 xn-1 + ... + an = 0,
то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х — xi . Из основной теоремы А. легко выводится, что всякий многочлен n-й степени распадается на n таких множителей 1-й степени, т. е. тождественно:
axn + a1xn-1 + ... +an = a (x– x1 )(x– x2 ) ... (x– xn ),
причём многочлен допускает лишь одно единственное разложение на множители такого вида.
Таким образом, уравнение n- й степени имеет n « корней». В частных случаях может оказаться, что некоторые из множителей равны, т. е. некоторые корни повторяются несколько раз (кратные корни); следовательно, число различных корней может быть и меньше n. Часто не так важно вычислить корни, как разобраться в том, каков характер этих корней. Как пример приведём найденное еще Декартом «правило знаков»: уравнение имеет не больше положительных корней, чем число перемен знака в ряду его коэффициентов (а если меньше, то на чётное число). Например, в рассмотренном выше уравнении x5– 4x - 2 = 0 одна перемена знака (первый коэффициент — положительный, остальные — отрицательные). Значит, не решая уравнения, можно утверждать, что оно имеет один и только один положительный корень. Общий вопрос о числе действительных корней в заданных пределах решается Штурма правилом . Очень важно, что y уравнения с действительными коэффициентами комплексные корни могут являться только парами: наряду с корнем а + bi корнем того же уравнения всегда будет и a– bi. Приложения ставят иногда и более сложные задачи этого рода; так, в механике доказывается, что движение устойчиво, если некоторое алгебраическое уравнение имеет только такие корни (хотя бы и комплексные), у которых действительная часть отрицательна, и это заставило искать условия, при которых корни уравнения обладают этим свойством (см. Рауса — Гурвица проблема ).
Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т. е. системы т уравнений 1-й степени с n неизвестными:
a11x1 +...+a1nxn = b1 ,
a21x1 +...+a2nxn = b2 ,
...............................
am1x1 +...+amnxn = bm .
Здесь x1 ..., xn — неизвестные, а коэффициенты записаны так, что значки при них указывают на номер уравнения и номер неизвестного. Значение систем уравнений 1-й степени определяется не только тем, что они — простейшие. На практике (например, для отыскания поправок в астрономических вычислениях, при оценке погрешности в приближённых вычислениях н т. д.) часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь (ввиду их чрезвычайной малости), так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет
(По материалам статьи А.Г. Куроша и О. Ю. Шмидта из 2-го изд. БСЭ).
Современное состояние алгебры
Сфера приложений математики расширяется с течением времени, и темп этого расширения возрастает. Если в 18 в. математика стала основой механики и астрономии, то уже в 19 в. она стала необходимой для различных областей физики, а ныне математические методы проникают даже в такие, казалось бы далекие от математики области знания, как биология, лингвистика, социология и т.д. Каждая новая область приложений влечёт создание новых глав внутри самой математики. Эта тенденция привела к возникновению значительного числа отдельных математических дисциплин, различающихся по областям исследования (теория функций комплексного переменного, теория вероятностей, теория уравнений математической физики и т. д.; более новые — теория информации, теория автоматического управления и т. д.). Несмотря на такую дифференциацию, математика остаётся единой наукой. Это единство сохраняется благодаря развитию и совершенствованию ряда общих, объединяющих идей и точек зрения. Тенденция к объединению лежит в существе математики как науки, пользующейся методом абстракции и, кроме того, часто стимулируется тем, что при исследовании задач, возникающих в различных областях знания, приходится пользоваться одним и тем же математическим аппаратом.
Современная А., понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Эту роль А. разделяет с топологией , в которой изучаются наиболее общие свойства непрерывных протяжённостей. А. и топология оказались, несмотря на различие объектов исследования, настолько связанными, что между ними трудно провести чёткую границу. Для современной А. характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми производятся эти операции. Попытаемся объяснить на простом примере, как это происходит. Всем известна формула (a + b )2 = а2 + 2аb + b2 . Её выводом является цепочка равенств: (а + b )2 = (a + b )(а + b ) = (a + b )a + (а + b ) b = (a2 + ba ) + (ab + b2 ) = a2 + (ba + ab )+ b2 = a2 + 2ab + b2 . Для обоснования мы дважды пользуемся законом дистрибутивности :. с (а + b ) = ca + cb (роль с играет а + b ) и (a + b ) с = ac + bc (роль с играют а и b ), закон ассоциативности при сложении позволяет перегруппировать слагаемые, наконец используется закон коммутативности :ba = ab . Что представляют собой объекты, закодированные буквами а и b , остаётся безразличным; важно, чтобы они принадлежали системе объектов, в которой определены две операции — сложение и умножение, удовлетворяющие перечисленным требованиям, касающимся свойств операций, а не объектов. Поэтому формула останется верной, если а и b обозначают векторы на плоскости или в пространстве, сложение принимается сперва как векторное сложение, потом как сложение чисел, умножение — как скалярное умножение векторов. Вместо а и b можно подставить коммутирующие матрицы (т. е. такие, что ab = ba , что для матриц может не выполняться), операторы дифференцирования по двум независимым переменным и т. д.
Свойства операций над математическими объектами в разных ситуациях иногда оказываются совершенно различными, иногда одинаковыми, несмотря на различие объектов. Отвлекаясь от природы объектов, но фиксируя определённые свойства операций над ними, мы приходим к понятию множества, наделённого алгебраической структурой, или алгебраической системы. Потребности развития науки вызвали к жизни целый ряд содержательных алгебраических систем: группы , линейные пространства , поля , кольца и т.д. Предметом современной А. в основном является исследование сложившихся алгебраических систем, а также исследование свойств алгебраических систем вообще, на основе ещё более общих понятий (Q-алгебры, модели). Кроме этого направления, носящего название общей А., изучаются применения алгебраических методов к др. разделам математики за её пределами (топология, функциональный анализ, теория чисел, алгебраическая геометрия, вычислительная математика, теоретическая физика, кристаллография и т. д.).