Большая Советская Энциклопедия (АЛ)
Шрифт:
Возникновение аналитической геометрии было вместе с тем и торжеством А. Если раньше, у древних греков, чисто алгебраические задачи облекались в геометрическую форму, то теперь, наоборот, алгебраические средства выражения оказались уже настолько удобными и наглядными, что геометрические задачи переводились на язык алгебраических формул. Подробнее о постепенном расширении области чисел, употребляемых в математике, о введении отрицательных, иррациональных, мнимых чисел см. в ст.Число . Здесь же надо отметить, что необходимость введения всех этих чисел особенно настоятельно ощущалась как раз в А.: так, например, квадратные иррациональности (корни) возникают при решении уравнений 2-й степени. Конечно, уже древнегреческие и среднеазиатские математики не могли пройти мимо извлечения корней и придумали остроумные способы приближенного
Итак, если оставить в стороне мнимые числа, то к 18 в. А. сложилась приблизительно в том объёме, который до наших дней преподаётся в средней школе. Эта А. охватывает действия сложения и умножения, с обратными им действиями вычитания и деления, а также возведение в степень (частный случай умножения) и обратное ему — извлечение корня. Эти действия производились над числами или буквами, которые могли обозначать положительные или отрицательные, рациональные или иррациональные числа. Указанные действия употреблялись в решении задач, по существу сводившихся к уравнениям 1-й и 2-й степеней. Теперь А. в этом объёме владеет каждый образованный человек. Эта «элементарная» А. применяется повседневно в технике, физике и др. областях науки и практики. Но содержание науки А. и её приложений этим далеко не ограничивается. Трудны и медленны были только первые шаги. С 16 в. и особенно с 18 в. начинается быстрое развитие А., а в 20 в. она переживает новый расцвет.
На русском языке изложение элементарной А. в том виде, как она сложилась к началу 18 в., было впервые дано в знаменитой «Арифметике» Л. Ф. Магницкого , вышедшей в 1703.
Алгебра в 18—19 вв. В конце 17 — начале 18 вв. произошёл величайший перелом в истории математики и естествознания: был создан и быстро распространился анализ бесконечно малых (дифференциальное и интегральное исчисления). Этот перелом был вызван развитием производительных сил, потребностями техники и естествознания того времени и подготовлен он был всем предшествующим развитием А. В частности, буквенные обозначения и действия над ними ещё в 16—17 вв. способствовали зарождению взгляда на математические величины как на переменные, что так характерно для анализа бесконечно малых, где непрерывному изменению одной величины обычно соответствует непрерывное изменение другой — её функции.
А. и анализ развивались в 17—18 вв. в тесной связи. В А. проникали функциональные представления, в этом направлении её обогатил И. Ньютон . С другой стороны, А. принесла анализу свой богатый набор формул и преобразований, игравших большую роль в начальный период интегрального исчисления и теории дифференциальных уравнений. Крупным событием в А. этого периода было появление курса алгебры Л. Эйлера , работавшего тогда в Петербургской академии наук. Этот курс вышел сначала на русском языке (1768—69), а затем неоднократно издавался на иностранных языках. Отличие А. от анализа в 18—19 вв. характеризуется тем, что А. имеет своим основным предметом прерывное, конечное. Эту особенность А. подчеркнул в 1-й половине 19 в. Н. И. Лобачевский , назвавший свою книгу «Алгебра, или Вычисление конечных» (1834). А. занимается основными операциями (сложение и умножение), производимыми конечное число раз.
Простейшим результатом умножения является одночлен, например 5a3 bx2 y. Сумма конечного числа таких одночленов (с целыми степенями) называется многочленом . Если обратить внимание на одну из входящих в многочлен букв, например x, то можно придать ему вид: a xn + a1 xn-1 + ... + an , где коэффициенты ao , a1 , . ...,an уже не зависят от х . Это — многочлен n-й степени (другое наименование — полином, целая рациональная функция). А. 18—19 вв. и есть прежде всего А. многочленов.
Объём А., т. о., оказывается значительно уже, чем объём анализа, но зато простейшие операции и объекты, составляющие предмет А., изучаются с большей глубиной и подробностью; и именно потому, что они простейшие, их изучение имеет фундаментальное значение для математики в целом. Вместе с тем А. и анализ продолжают иметь много точек соприкосновения, и разграничение между ними не является жёстким. Так, например, анализ перенял от А. её символику, без которой он не мог бы и возникнуть. Во многих случаях изучение многочленов, как более простых функций, пролагало пути для общей теории функций. Наконец, через всю дальнейшую историю математики проходит тенденция сводить изучение более сложных функций к многочленам или рядам многочленов: простейший пример — Тейлора ряд . С другой стороны, А. нередко пользуется идеей непрерывности, а представление о бесконечном числе объектов стало господствующим в А. последнего времени, но уже в новом, специфическом виде (см. ниже — Современное состояние алгебры).
Если приравнять многочлен нулю (или вообще какому-либо определённому числу), мы получим алгебраическое уравнение. Исторически первой задачей А. было решение таких уравнений, т. е. нахождение их корней — тех значений неизвестной величины х, при которых многочлен равен нулю. С древних времён известно решение квадратного уравнения х2 + px + q =0 в виде формулы:
Алгебраическое решение уравнения 3-й и 4-й степеней было найдено в 16 в. Для уравнения вида x3 + px + q = 0 (к которому можно привести всякое уравнение 3-й степени) оно даётся формулой:
Эта формула называется формулой Кардано, хотя вопрос о том, была ли она найдена самим Дж. Кардано или же заимствована им у других математиков, нельзя считать вполне решенным. Метод решения алгебраических уравнений 4-й степени указал Л. Феррари . После этого начались настойчивые поиски формул, которые решали бы уравнения и высших степеней подобным образом, т. с. сводили бы решение к извлечениям корней («решение в радикалах»). Эти поиски продолжались около трёх столетий, и лишь в начале 19 в. Н. Абель и Э. Галуа доказали, что уравнения степеней выше 4-й в общем случае в радикалах не решаются: оказалось, что существуют неразрешимые в радикалах уравнения n-й степени для любого n, большего или равного 5. Таково, например, уравнение x5– 4x - 2 = 0. Это открытие имело большое значение, т. к. оказалось, что корни алгебраических уравнений — предмет гораздо более сложный, чем радикалы. Галуа не ограничился этим, так сказать, отрицательным результатом, а положил начало более глубокой теории уравнений, связав с каждым уравнением группу подстановок его корней. Решение уравнения в радикалах равносильно сведению первоначального уравнения к цепи уравнений вида: ym = а , которое и выражает собой, что
Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного? Например, через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий — сложения, вычитания, умножения и деления. В таком более широком понимании Галуа теория продолжает развиваться вплоть до нашего времени.
С чисто практической стороны для вычисления корней уравнения по заданным коэффициентам не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. Численное решение уравнений пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (например, в астрономии и технике) и сами коэффициенты обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью.